Up to All Courses for 2016-17 Show Filters

Chemical Engineering (ChE) Courses (2016-17)

ChE/Ch/E/Bi 107. Social Media for Scientists. 9 units (3-0-6): first, third terms. An introduction to the use of social media for scientific communication. Social media platforms are discussed in the context of their use to professionally engage scientific communities and general audiences. Topics will include ethics, privacy, reputation management, ownership and the law, and will focus on the use and impact of social media for personal and professional career development. Lectures will include presentations by invited experts in various specialties, a number of which will have worldwide recognition. Instructor: Davis.
ChE/BE/MedE 112. Design, Invention, and Fundamentals of Microfluidic Systems. 9 units (3-0-6): second term. This course combines three parts. First, it will cover fundamental aspects of kinetics, mass-transport, and fluid physics that are relevant to microfluidic systems. Second, it will provide an understanding of how new technologies are invented and reduced to practice. Finally, students in the course will work together to design microfluidic systems that address challenges in Global Health, with an emphasis on students' inventive contributions and creativity. Students will be encouraged and helped, but not required, to develop their inventions further by working with OTT and entrepreneurial resources on campus. Participants in this course benefit from enrollment of students with diverse backgrounds and interests. For chemical engineers, suggested but not required courses are ChE 101 (Chemical Reaction Engineering) and ChE 103abc (Transport Phenomena). Students are encouraged to contact the instructor to discuss enrollment. Instructor: Ismagilov.
ChE/BE 163. Introduction to Biomolecular Engineering. 12 units (3-0-9): first term. The course introduces rational design and evolutionary methods for engineering functional protein and nucleic acid systems. Rational design topics include molecular modeling, positive and negative design paradigms, simulation and optimization of equilibrium and kinetic properties, design of catalysts, sensors, motors, and circuits. Evolutionary design topics include evolutionary mechanisms and tradeoffs, fitness landscapes, directed evolution of proteins, and metabolic pathways. Some assignments require programming (Python is the language of instruction). Instructors: Arnold, Bois.
ChE/BE/MedE 188. Molecular Imaging. 9 units (3-0-6): second term. This course will cover the basic principles of biological and medical imaging technologies including magnetic resonance, ultrasound, nuclear imaging, fluorescence, bioluminescence and photoacoustics, and the design of chemical and biological probes to obtain molecular information about living systems using these modalities. Topics will include nuclear spin behavior, sound wave propagation, radioactive decay, photon absorption and scattering, spatial encoding, image reconstruction, statistical analysis, and molecular contrast mechanisms. The design of molecular imaging agents for biomarker detection, cell tracking, and dynamic imaging of cellular signals will be analyzed in terms of detection limits, kinetics, and biological effects. Participants in the course will develop proposals for new molecular imaging agents for applications such as functional brain imaging, cancer diagnosis, and cell therapy. Instructor: Shapiro.