Up to All Undergraduate Courses for 2017-18 Show Filters

Computation & Neural Sys(E&AS) (CNS) Undergraduate Courses (2017-18)

CNS/SS/Psy/Bi 102 ab. Brains, Minds, and Society. 9 units (3-0-6): second, third terms. Introduction to the computations made by the brain during economic and social decision making and their neural substrates. First quarter: Reinforcement learning. Unconscious and conscious processing. Emotion. Behavioral economics. Goal-directed and habit learning. Facial processing in social neuroscience. Second quarter: History and mechanisms of reinforcement. Associative learning. Mentalizing and strategic thinking. Neural basis of prosociality. Exploration-exploitation tradeoff. Functions of basal ganglia. Instructors: Camerer, O'Doherty.
CNS/Psy/Bi 131. The Psychology of Learning and Motivation. 9 units (3-0-6): second term. This course will serve as an introduction to basic concepts, findings, and theory from the field of behavioral psychology, covering areas such as principles of classical conditioning, blocking and conditioned inhibition, models of classical conditioning, instrumental conditioning, reinforcement schedules, punishment and avoidance learning. The course will track the development of ideas from the beginnings of behavioral psychology in the early 20th century to contemporary learning theory. Not offered 2017-18.
Bi/CNS/NB 150. Introduction to Neuroscience. 10 units (4-0-6): third term. General principles of the function and organization of nervous systems, providing both an overview of the subject and a foundation for advanced courses. Topics include the physical and chemical bases for action potentials, synaptic transmission, and sensory transduction; anatomy; development; sensory and motor pathways; memory and learning at the molecular, cellular, and systems level; and the neuroscience of brain diseases. Instructors: Adolphs, Lester.
Bi/CNS/NB 152. Neural Circuits and Physiology of Appetite and Body Homeostasis. 6 units (2-0-4): third term. An advanced course of lectures, readings, and student presentations focusing on neural basis of appetites such as hunger and thirst. This course will cover the mechanisms that control appetites both at peripheral and central level. These include genetics, neural manipulation, and viral tracing tools with particular emphasis on the logic of how the body and the brain cooperate to maintain homeostasis. Given in alternate years; not offered 2017-18. Instructor: Oka.
Bi/CNS/NB 153. Brain Circuits. 9 units (3-0-6): first term. What functions arise when many thousands of neurons combine in a densely connected circuit? Though the operations of neural circuits lie at the very heart of brain science, our textbooks have little to say on the topic. Through an alternation of lecture and discussion this course explores the empirical observations in this field and the analytical approaches needed to make sense of them. We begin with a foray into sensory and motor systems, consider what basic functions they need to accomplish, and examine what neural circuits are involved. Next we explore whether the circuit motifs encountered are also found in central brain areas, with an emphasis on sensory-motor integration and learning. Finally we discuss design principles for neural circuits and what constraints have shaped their structure and function in the course of evolution. Given in alternate years; not offered 2017-18. Instructor: Meister.
Bi/CNS/NB 157. Comparative Nervous Systems. 9 units (2-3-4): third term. An introduction to the comparative study of the gross and microscopic structure of nervous systems. Emphasis on the vertebrate nervous system; also, the highly developed central nervous systems found in arthropods and cephalopods. Variation in nervous system structure with function and with behavioral and ecological specializations and the evolution of the vertebrate brain. Letter grades only. Given in alternate years; not offered 2017-18. Instructor: Allman.
Bi/CNS 158. Vertebrate Evolution. 9 units (3-0-6): third term. An integrative approach to the study of vertebrate evolution combining comparative anatomical, behavioral, embryological, genetic, paleontological, and physiological findings. Special emphasis will be given to: (1) the modification of developmental programs in evolution; (2) homeostatic systems for temperature regulation; (3) changes in the life cycle governing longevity and death; (4) the evolution of brain and behavior. Letter grades only. Given in alternate years; offered 2017-18. Instructor: Allman.
Bi/CNS/NB 162. Cellular and Systems Neuroscience Laboratory. 12 units (2-7-3): third term. A laboratory-based introduction to experimental methods used for electrophysiological studies of the central nervous system. Through the term, students investigate the physiological response properties of neurons in insect and mammalian brains, using extra- and intracellular recording techniques. Students are instructed in all aspects of experimental procedures, including proper surgical techniques, electrode fabrication, stimulus presentation, and computer-based data analysis. Instructor: Bremner.
Bi/CNS/NB 164. Tools of Neurobiology. 9 units (3-0-6): first term. Offers a broad survey of methods and approaches to understanding in modern neurobiology. The focus is on understanding the tools of the discipline, and their use will be illustrated with current research results. Topics include: molecular genetics, disease models, transgenic and knock-in technology, virus tools, tracing methods, gene profiling, light and electron microscopy, optogenetics, optical and electrical recording, neural coding, quantitative behavior, modeling and theory. Instructor: Meister.
CNS/Bi/SS/Psy/NB 176. Cognition. 9 units (4-0-5): third term. The cornerstone of current progress in understanding the mind, the brain, and the relationship between the two is the study of human and animal cognition. This course will provide an in-depth survey and analysis of behavioral observations, theoretical accounts, computational models, patient data, electrophysiological studies, and brain-imaging results on mental capacities such as attention, memory, emotion, object representation, language, and cognitive development. Instructor: Shimojo.
Bi/CNS/NB 184. The Primate Visual System. 9 units (3-1-5): third term. This class focuses on the primate visual system, investigating it from an experimental, psychophysical, and computational perspective. The course will focus on two essential problems: 3-D vision and object recognition. We will examine how a visual stimulus is represented starting in the retina, and ending in the frontal lobe, with a special emphasis placed on mechanisms for high-level vision in the parietal and temporal lobes. An important aspect of the course is the lab component in which students design and analyze their own fMRI experiment. Given in alternate years; offered 2017-18. Instructor: Tsao.
Bi/CNS/NB 185. Large Scale Brain Networks. 6 units (2-0-4): third term. This class will focus on understanding what is known about the large-scale organization of the brain, focusing on the mammalian brain. What large scale brain networks exist and what are their principles of function? How is information flexibly routed from one area to another? What is the function of thalamocortical loops? We will examine large scale networks revealed by anatomical tracing, functional connectivity studies, and mRNA expression analyses, and explore the brain circuits mediating complex behaviors such as attention, memory, sleep, multisensory integration, decision making, and object vision. While each of these topics could cover an entire course in itself, our focus will be on understanding the master plan--how the components of each of these systems are put together and function as a whole. A key question we will delve into, from both a biological and a theoretical perspective, is: how is information flexibly routed from one brain area to another? We will discuss the communication through coherence hypothesis, small world networks, and sparse coding. Given in alternate years, not offered 2017-18. Instructor: Tsao.
CNS/Bi/EE/CS/NB 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4): second term. Lecture, laboratory, and project course aimed at understanding visual information processing, in both machines and the mammalian visual system. The course will emphasize an interdisciplinary approach aimed at understanding vision at several levels: computational theory, algorithms, psychophysics, and hardware (i.e., neuroanatomy and neurophysiology of the mammalian visual system). The course will focus on early vision processes, in particular motion analysis, binocular stereo, brightness, color and texture analysis, visual attention and boundary detection. Students will be required to hand in approximately three homework assignments as well as complete one project integrating aspects of mathematical analysis, modeling, physiology, psychophysics, and engineering. Given in alternate years; Offered 2017-18. Instructors: Meister, Perona, Shimojo.
CNS/Bi/Ph/CS/NB 187. Neural Computation. 9 units (3-0-6): first term. This course investigates computation by neurons. Of primary concern are models of neural computation and their neurological substrate, as well as the physics of collective computation. Thus, neurobiology is used as a motivating factor to introduce the relevant algorithms. Topics include rate-code neural networks, their differential equations, and equivalent circuits; stochastic models and their energy functions; associative memory; supervised and unsupervised learning; development; spike-based computing; single-cell computation; error and noise tolerance. Instructor: Perona.
BE/CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term: (2-4-3) third term. This course investigates computation by molecular systems, emphasizing models of computation based on the underlying physics, chemistry, and organization of biological cells. We will explore programmability, complexity, simulation of, and reasoning about abstract models of chemical reaction networks, molecular folding, molecular self-assembly, and molecular motors, with an emphasis on universal architectures for computation, control, and construction within molecular systems. If time permits, we will also discuss biological example systems such as signal transduction, genetic regulatory networks, and the cytoskeleton; physical limits of computation, reversibility, reliability, and the role of noise, DNA-based computers and DNA nanotechnology. Part a develops fundamental results; part b is a reading and research course: classic and current papers will be discussed, and students will do projects on current research topics. Instructor: Winfree.
Bi/CNS/NB 195. Mathematics in Biology. 9 units (3-0-6): first term. This course develops the mathematical methods needed for a quantitative understanding of biological phenomena, including data analysis, formulation of simple models, and the framing of quantitative questions. Topics include: probability and stochastic processes, linear algebra and transforms, dynamical systems, scientific programming. Given in alternate years; offered 2017-18. Instructor: Meister.