Up to All Undergraduate Courses for 2017-18 Show Filters

Physics (Ph) Undergraduate Courses (2017-18)

Ph/APh/EE/BE 118 abc. Physics of Measurement. 9 units (3-0-6): first, second, third terms. This course focuses on exploring the fundamental underpinnings of experimental measurements from the perspectives of responsivity, noise, backaction, and information. Its overarching goal is to enable students to critically evaluate real measurement systems, and to determine the ultimate fundamental and practical limits to information that can be extracted from them. Topics will include physical signal transduction and responsivity, fundamental noise processes, modulation, frequency conversion, synchronous detection, signal-sampling techniques, digitization, signal transforms, spectral analyses, and correlations. The first term will cover the essential fundamental underpinnings, while topics in second term will include examples from optical methods, high-frequency and fast temporal measurements, biological interfaces, signal transduction, biosensing, and measurements at the quantum limit. Instructor: Roukes.
CNS/Bi/Ph/CS/NB 187. Neural Computation. 9 units (3-0-6): first term. This course investigates computation by neurons. Of primary concern are models of neural computation and their neurological substrate, as well as the physics of collective computation. Thus, neurobiology is used as a motivating factor to introduce the relevant algorithms. Topics include rate-code neural networks, their differential equations, and equivalent circuits; stochastic models and their energy functions; associative memory; supervised and unsupervised learning; development; spike-based computing; single-cell computation; error and noise tolerance. Instructor: Perona.