Table of Contents

Introduction 1
Press Releases 2
Annual Retreat 7
Ferguson and Reddy Prize 9
Professional Honors and Awards 10
Seminars 12
Named Lectures 15
Current Graduate Students 17
Graduating Class of 2020 24
Financial Support and Donors 27
Faculty and Research Staff 30
Biology and Biological Engineering Faculty Research Updates 37
Division Staff 329
Biology and Biological Engineering Facilities 330
Introduction

The annual report for Caltech’s Division of Biology and Biological Engineering (BBE) presents major research accomplishments of faculty, students, and staff during the previous academic year. This report covers October 1, 2019 to September 30, 2020.

Front Cover Illustration
Infections with a novel coronavirus, SARS-CoV-2, have resulted in a pandemic that has claimed millions of lives worldwide. In the shadow of the health crisis, scientists combine research into combatting COVID-19 with activism to improve justice for Black and other under-represented minorities.
Credit: Pamela Bjorkman, Marta Murphy, Christopher Barnes – Bjorkman Lab

Back Cover Illustration
SARS-CoV-2 spike trimer (gray shades) bound by a potent, neutralizing antibody called C144 (blue shades). This antibody works to prevent SARS-CoV-2 infection by blocking binding to the human ACE-2 receptor on the surface of the human cell that the virus needs for entry.
Credit: Christopher Barnes - Bjorkman Lab
09/28/2020
From the Break Through Campaign: Earlier Help for Anorexia

09/24/2020
The Caltech Effect: Pivot Points

09/17/2020
How Fear Persists in the Mouse Brain
Lori Dajose

09/16/2020
As Pandemic Progressed, People's Perceived Risks Went Up
Whitney Clavin

08/19/2020
From Caltech Magazine: Caltech Researchers Focus on the Novel Coronavirus

08/07/2020
Deprived of Oxygen, Layers of Bacteria Get Creative
Lori Dajose

08/03/2020
Merkin Institute Catalyzes COVID-19 Research at Caltech
Davin Malasarn

07/23/2020
Images of Antibodies as They Neutralize the COVID-19 Virus
Lori Dajose

07/17/2020
Decoding the Language of Cellular Messaging
Lori Dajose

07/16/2020
Imaging Enzyme Activity with Ultrasound
Emily Velasco

07/15/2020
Bacteria with Metal Diet Discovered in Dirty Glassware
Whitney Clavin

07/14/2020
Molecular "Tails" Are Secret Ingredient for Gene Activation in Humans, Yeast, and Other Organisms
Emily Velasco
07/10/2020
Caltech Professor Answers Community’s Questions on Coronavirus
Alyce Torrice

06/25/2020
"Where are My Keys?" and Other Memory-Based Choices Probed in the Brain
Whitney Clavin

06/15/2020
Two Caltech Grads Selected for Fulbright Fellowships
Robert Perkins

06/12/2020
How Young Embryos Conduct Quality Control
Lori Dajose

06/08/2020
The Evolution of a Bacterial Navigation System
Lori Dajose

06/04/2020
Faces, Bodies, Spiders, and Radios: How the Brain Represents Visual Objects
Lori Dajose

05/29/2020
Eight US Manufacturers Selected to Make NASA COVID-19 Ventilator

05/29/2020
Social Science in the Time of COVID: A Conversation with Ralph Adolphs
Emily Velasco

05/21/2020
Caltech Researchers Solve Structure of Crucial Cellular Component
Lori Dajose

05/11/2020
New Insights into Early Embryonic Development
Lori Dajose

05/11/2020
Seeing Through Opaque Media
Robert Perkins

05/04/2020
Understanding Congenital Heart Defects, One Chicken at a Time
Lori Dajose
04/27/2020
Forming New Habits in the Era of the Coronavirus
Whitney Clavin

04/20/2020
High-Throughput Method Speeds Discovery of Improved Vectors For Gene Delivery To Diverse Brain Cell Types
Lori Dajose

04/17/2020
Pandemics of the Past and Future: A Conversation with Nobelist David Baltimore
Lori Dajose

04/06/2020
An Invisible Threat
Whitney Clavin

04/03/2020
Deep-Sea Worms and Bacteria Team Up to Harvest Methane
Robert Perkins

03/31/2020
The COVID-19 Virus, By the Numbers
Lori Dajose

03/27/2020
Caltech Scientists Turn Research Toward Fighting Coronavirus Pandemic
Emily Velasco

03/20/2020
The Tip of the Iceberg: Virologist David Ho (BS ’74) Speaks About COVID-19
Lori Dajose

03/10/2020
Mapping Bacterial Neighborhoods in the Gut
Lori Dajose

02/17/2020
Biomarker for Parkinson's Disease May Originate in the Gut
Lori Dajose

02/04/2020
Ultrasound Can Selectively Kill Cancer Cells
Robert Perkins
01/15/2020  
**New Mechanisms Describe How the Genome Regulates Itself**  
Lori Dajose

01/08/2020  
**From the Break Through Campaign: What Makes Up a Mind**

12/20/2019  
**Protein Signposts Guide Formation of Neural Connections**  
Lori Dajose

12/19/2019  
**Decade of Discovery**

12/11/2019  
**How Interacting with Females Increases Aggression in Male Fruit Flies**  
Lori Dajose

12/05/2019  
**Watson Lecture, December 11: Joe Parker**

11/19/2019  
**Visualizing DNA Labels in Cells and Tissues**  
Lori Dajose

11/19/2019  
**Patients Missing One Brain Hemisphere Show Surprisingly Intact Neural Connections**  
Whitney Clavin

11/18/2019  
**Mitochondrial Mixing Mechanism Critical for Sperm Production in Mice**  
Emily Velasco

11/18/2019  
**Coming to a Head: Insights from a Vampire of the Deep**  
Alison Koontz

11/13/2019  
**Scientists Identify a Genetic Basis for Healthy Sleep**  
Lori Dajose

11/11/2019  
**From the Break Through Campaign: The Regenerator**

10/25/2019  
**From the Break Through Campaign: Science in 60 Seconds**
10/21/2019
Mending Broken Hearts with Neural Crest Cells
Lori Dajose

10/17/2019
Male and Female Mice Have Different Brain Cells
Lori Dajose

10/14/2019
Expanding Neuroscience's Toolkit
Lori Dajose
Annual Retreat | September 24-26, 2020

Event Coordinator: Lauren Breeyear

Every fall, BBE hosts an annual retreat. The retreat serves as a forum for faculty, grad students, postdocs and research staff to discuss BBE’s diverse research and to socialize. The event also gives first-year grad students the opportunity to select rotation labs and learn more about the research of the division.

Due to the pandemic and Caltech restrictions, the BBE 2020 retreat was held virtually.

The retreat was hosted by professors, Dave Van Valen, Kaihang Wang, and Magdalena Zernicka-Goetz.
### Thursday, September 24, 2020

#### General Session I:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:30 am</td>
<td>Welcome - New Chair Richard Murray</td>
</tr>
<tr>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:35-10:50 am</td>
<td>Sarkis Mazmanian &quot;The Gut Microbiome Modulates Behavior in Mice&quot;</td>
</tr>
<tr>
<td>10:52-11:07 am</td>
<td>Bruce Hay &quot;Engineering the Composition and Fate of Wild Populations&quot;</td>
</tr>
<tr>
<td>11:10-11:25 am</td>
<td>Rebecca Voorhees &quot;How to Make a Membrane Protein&quot;</td>
</tr>
<tr>
<td>11:30-11:45 am</td>
<td>Kai Zinn &quot;Cell Surface Protein Interactions in Flies and Humans&quot;</td>
</tr>
<tr>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:47-12:00 pm</td>
<td>Abhik Banerjee - Graduate Student - Guttman Lab &quot;SARS-CoV-2 Suppresses mRNA Splicing, Translation, and Protein Trafficking in a Multipronged Mechanism to Evade Host Defenses&quot;</td>
</tr>
<tr>
<td>12:00-1:00 pm</td>
<td>Break</td>
</tr>
</tbody>
</table>

#### General Session II:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00-1:15 pm</td>
<td>Erik Winfree &quot;Pattern Recognition in the Nucleation Kinetics of Molecular Self-Assembly&quot;</td>
</tr>
<tr>
<td>1:17-1:32 pm</td>
<td>Ellen Rothenberg &quot;Gene Network and Epigenetic Switches in Stem/Progenitor Cell Development to T cells&quot;</td>
</tr>
<tr>
<td>1:35-1:50 pm</td>
<td>Mitch Guttman &quot;RNA Promotes the Formation of Spatial Compartments in the Nucleus&quot;</td>
</tr>
<tr>
<td>1:52-2:07 pm</td>
<td>Henry Lester &quot;<a href="http://inside-out.caltech.edu://9988">http://inside-out.caltech.edu://9988</a>&quot;</td>
</tr>
<tr>
<td>2:07-2:10 pm</td>
<td>Alice Huang - Bi 23 &quot;Synthetic Biology Tools for Designing, Modeling, and Simulating Biochemical Circuits&quot;</td>
</tr>
<tr>
<td>2:10-2:25 pm</td>
<td>William Poole - Graduate Student - Murray Lab &quot;Synthetic Biology Tools for Designing, Modeling, and Simulating Biochemical Circuits&quot;</td>
</tr>
<tr>
<td>2:25 pm</td>
<td>Thank you Steve Mayo Slide Show</td>
</tr>
</tbody>
</table>

---

### Friday, September 25, 2020

#### General Session I:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:15 am</td>
<td>Angela Stathopoulos &quot;Lights, Camera, Action! Drosophila Embryonic Transcription Goes Live&quot;</td>
</tr>
<tr>
<td>10:17-10:28 am</td>
<td>Michael Elowitz &quot;Unexpected but Effective: Natural and Synthetic Biological Circuit Designs&quot;</td>
</tr>
<tr>
<td>10:30-10:45 am</td>
<td>Viviana Gradinari &quot;Of Viruses and Brains, Fear Not&quot;</td>
</tr>
<tr>
<td>10:48-11:00 am</td>
<td>Daniel Wagenaar - Neurotechnology Lab</td>
</tr>
<tr>
<td>11:00-11:10 am</td>
<td>Break</td>
</tr>
<tr>
<td>11:10-11:15 am</td>
<td>Pallavi Panda - Postdoc - Glover Lab &quot;Rcd4:Ara3, a Sub-Complex Required by Daughter Centrioles to Undergo Centriole to Centrosome Conversion in Drosophila&quot;</td>
</tr>
<tr>
<td>11:17-11:28 am</td>
<td>Shuwa Xu - Postdoc - Zinn Lab &quot;Significance Of Affinity Variation Of Cell Surface Recognition Molecules In Wiring The Nervous System&quot;</td>
</tr>
<tr>
<td>11:30 am</td>
<td>Sarah Cohen - Graduate Student - Sternberg Lab &quot;Biology at Caltech&quot;</td>
</tr>
<tr>
<td>12:00-1:00 pm</td>
<td>Break</td>
</tr>
</tbody>
</table>

#### General Session II:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00-1:15 pm</td>
<td>Bill Dunphy &quot;Genome-Wide Studies of DNA Replication in Human Cells&quot;</td>
</tr>
<tr>
<td>1:17-1:28 pm</td>
<td>Niles Pierce &quot;Programming Dynamic Molecular Function in a Biological Context&quot;</td>
</tr>
<tr>
<td>1:30-1:45 pm</td>
<td>Joe Parker &quot;Convergent Evolution of a Social Symbiosis&quot;</td>
</tr>
<tr>
<td>1:47-2:05 pm</td>
<td>Riley Galton - Graduate Student - Fejes-Toth &amp; Bronner Lab &quot;A Somatic piRNA Pathway Regulates Avian Neural crest EMT&quot;</td>
</tr>
<tr>
<td>2:05-2:20 pm</td>
<td>Victoria Jorgensen - Graduate Student - Zernicka-Goetz Lab &quot;Modelling Embryos from Stem Cells&quot;</td>
</tr>
<tr>
<td>3:30 pm</td>
<td>Women in BBE (WIBBE) Present &quot;Picture a Scientist&quot; - Virtual Screening &amp; Coffee Hour</td>
</tr>
</tbody>
</table>

---

### Saturday, September 26, 2020

#### Panel Discussion

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 pm</td>
<td>Viviana Gradinari, Dianne Newman &amp; Lior Pachter Kyobi Skutt-Kakaria (Dickinson Lab) Amir Behbahani (Dickinson Lab) Moderator: Henry Schreiber</td>
</tr>
</tbody>
</table>
**LAWRENCE L. AND AUDREY W. FERGUSON PRIZE**

This prize is awarded to the graduating Ph.D. candidate in biology who has produced the most outstanding doctoral thesis for the past year.

*2020 Sofia Agustina Quinodoz*

**DR. NAGENDRANATH REDDY BIOLOGICAL SCIENCES THESIS PRIZE**

This prize is awarded to the female Ph.D. candidate in the Division of Biology and Biological Engineering who has produced the most outstanding thesis in the biological sciences during the past year.

*2020 Sofia Agustina Quinodoz*

Quinodoz studies how human genomes are organized in the nucleus of different types of cells. A cell's nucleus is a space about 50 times smaller than the width of a human hair, but it contains six feet of genetic material consisting of about 20,000 genes. These genes are compacted to fit inside the nucleus, requiring complex DNA folding and organization.

Recently, she developed a novel method to map out the contents of cell nuclei in three dimensions. She and her collaborators found that genomes are folded together in precise ways. Specifically, she discovered that genes of similar functions or shared activity are spatially arranged around large structures in the nucleus called nuclear bodies. The method Quinodoz developed, called SPRITE (Split-Pool Recognition of Interactions by Tag Extension), measures interactions between thousands of molecules within these large structures and can measure both DNA and RNA interactions simultaneously, while previous methods have only been able to examine DNA. Using SPRITE, she and her collaborators revealed that specific sets of DNA sites are organized around two RNA-containing nuclear bodies in both mouse stem cells and human lymphoblast cells.

"SPRITE has enabled us to identify novel inter-chromosomal interactions occurring around large nuclear bodies that were previously missed," Quinodoz says.

At Caltech, Quinodoz was also involved in the Graduate Student Council as a diversity chair and advocacy chair. In those roles, she promoted increased recruitment of female and minority scientists to Caltech's graduate programs. She was also awarded the Howard Hughes Medical Institute Gilliam Fellowship for Advanced Studies and a National Science Foundation Graduate Research Fellowship Program Award. She and the other 12 Weintraub awardees will participate in a scientific symposium honoring biologist Harold Weintraub on May 3, 2019, at Fred Hutchinson's Robert W. Day Campus in Seattle.

Written by
Lorinda Dajose
Frances H. Arnold
Linus Pauling Professor of Chemical Engineering, Bioengineering and Biochemistry; Director, Donna and Benjamin M. Rosen Bioengineering Center
*2020 Foreign Member, UK Royal Society  
*2020 Honorary Doctorate, Princeton University  
*2019 Foreign Member, UK Royal Society of Chemistry  
*2019 Honorary Doctorate, University of Padova  
*2019 International Women’s Forum Hall of Fame  
*2019 Portrait of a Nation Prize, Smithsonian Institute National Portrait Gallery  
*2019 Pontifical Academy of Sciences  
*2019 Honorary Doctorate, Technical University of Denmark  
*2019 Bower Award for Advancement in Science, Franklin Institute

Pamela J. Bjorkman
David Baltimore Professor of Biology and Bioengineering; Executive Officer for Biology and Biological Engineering  
*2020 World Laureate Foundation speaker  
*2020 Citation Laureate, Physiology or Medicine  
*2019 Ceppellini Award from European Federation for Immunogenetics  
*2019 Keynote speaker at West Coast Structural Biology Workshop  
*2019 Physics Colloquium, Los Alamos National Laboratories

Viviana Gradinaru
Professor of Neuroscience and Biological Engineering; Investigating, Heritage Medical Research Institute; Director, Center for Molecular and Cellular Neuroscience  
*2020 Science and PINS Prize for Neuromodulation!  
*2020 Outstanding New Investigator Award from ASGCT!  
*2020 Vilcek Prize for Creative Promise in Biomedical Science!

Sarkis Mazmanian
Luis B. and Nelly Soux Professor of Microbiology; Investigator, Heritage Medical Research Institute  
*2020 Danisco Microbiome Science Award  
*Heritage Principal Investigator

Elliot Meyerowitz
George W. Beadle Professor of Biology; Investigator, Howard Hughes Medical Institute  
*2019 Hirase Award, Japanese Society of Plant Morphology (shared among the authors of Ishihara et al. 2019)

Yuki Oka
Professor of Biology and Chen Scholar  
*2020 Sloan Research Fellowship
Victoria J. Orphan
James Irvine Professor of Environmental Science and Geobiology; Allen V. C. Davis and Lenabelle Davis Leadership Chair, Center for Environmental Microbial Interactions; Director, Center for Environmental Microbial Interactions
*2020 Named Members of American Academy of Arts and Sciences

Joseph Parker
Assistant Professor of Biology and Biological Engineering
*2020 Sloan Research Fellowship

Ellen Rothenberg
Distinguished Professor of Biology
Distinguished Fellow, American Association of Immunologists (inaugural class)

Matt Thomson
Assistant Professor of Computational Biology; Investigator, Heritage Medical Research Institute
*2019 Packard Fellows in Science and Engineering

Doris Y. Tsao
Professor of Biology; T&C Chen Center for Systems Neuroscience Leadership Chair; Investigator, Howard Hughes Medical Institute; Director, T&C Chen Center for Systems Neuroscience
* Inducted into the National Academy of Sciences

David Van Valen
Assistant Professor of Biology and Biological Engineering
*2020 Rita Allen Foundation Scholar

Rebecca Voorhees
Assistant Professor of Biology and Biological Engineering; Investigator, Heritage Medical Research Institute
* Awarded the NIH Director’s New Innovator Award (DP2)

Magdalena Zernicka-Goetz
Bren Professor of Biology and Biological Engineering
2020 NIH Director’s Pioneer Award
General Biology Seminar Series
Most Tuesdays | 4:00 PM | Kerckhoff 119
Staff organizer: Lauren Breeyear

November 2019

**HIV Diversity and Vaccine Design**
Bette Korber, Theoretical Biology and Biophysics, Los Alamos National Laboratory

December 2019

**Towards Multipurpose Biophysics-Based Mathematical Models of Cortical Circuits**
Gaute Einevoll, Professor, University of Oslo

**The Ins and Outs of Hippocampal Replay**
David Foster, Associate Professor, Psychology, UC Berkeley

January 2020

**Genome-Wide Mapping of Protein-DNA Interaction Dynamics**
Steve Henikoff, PI, Fred Hutchinson Cancer Research Center/HHMI

**Probing the Nuclear Organization via Machine Learning**
Jian Ma, Associate Professor, School of Computer Science, Carnegie Mellon University

**Asymmetric Stem Cell Division and Germline Immortality**
Yukiko Yamashita, Professor, Cell & Developmental Biology, University of Michigan Medical School

February 2020

**Neural Adaptations and Behavioral Strategies for Aerial Interception of Targets in Visually Guided Predatory Insects**
Paloma Gonzalez-Bellido, Assistant Professor, Ecology, Evolution and Behavior, University of Minnesota

**Regulation of Cardiopharyngeal Fates in Chordates**
Lionel Christiaen, Associate Professor, Biology, New York University

March 2020

**How Maternal Transcription Factors Shape Early Embryonic Chromatin Landscape in Time and Space**
Ken Cho, Professor, Developmental & Cell Biology, University of Irvine
April 2020 (Zoom)  
**Sensing Inside and Outside: How Does the Brain Regulate Body Fluid Balance**  
Yuki Oka, Assistant Professor of Biology and Chen Scholar, Division of Biology and Biological Engineering, Caltech

Sept 2020 (Zoom)  
**The Neural Basis of Host Seeking in Skin-Penetrating Nematodes**  
Elissa Hallem, Professor, Microbiology, Immunology & Molecular Genetics, UCLA

**Biochemistry Seminar Series**  
The Biochemistry Seminar Series features talks by invited scholars who elucidate molecular mechanisms of cell based processes by an interdisciplinary approach, combining biochemical, biophysical, structural biological, computational, molecular biological, and cell biological techniques. Students enrolled in the Biochemistry and Molecular Biophysics Ph.D. program are strongly encouraged to attend and interact with their faculty mentors and colleagues.  
Usually Thursdays twice monthly | 4:00 PM | Noyes 147  
Staff organizer: Contact Margot Hoyt

October 2019  
**Watching a fine-tuned molecular machine at work: Structural and functional studies of the 26S proteasome**  
Andreas Martin, Professor of Biochemistry, Biophysics and Structural Biology, University of California, Berkeley

**Opening Windows Into The Cell: Bringing Structure To Cell Biology Using Cryo-electron Tomography**  
Elizabeth Villa, Assistant Professor of Biological Sciences, University of California, San Diego

November 2019  
**Metabolic filaments and allosteric control of enzyme activity**  
Justin Kollman, Assistant Professor of Biochemistry, University of Washington

**Cryo-EM analysis of molecular machines involved in bacterial pathogenesis**  
Melanie Ohi, Associate Professor of Cell and Developmental Biology, University of Michigan

December 2019  
**RNA Structure-Function Relationships Under In Vivo and In Vivo-Like Conditions: Impacts on RNA Catalysis, Folding, and Transcriptome-Wide Response to Stress**  
Philip Bevilacqua, Distinguished Professor of Chemistry and Biochemistry and Molecular Biology, Pennsylvania State University

**Proteins in Motion: Going beyond Bragg Diffraction**  
Nozomi Ando, Assistant Professor of Chemistry & Chemical Biology, Cornell University

March 2020  
**mRNA modifications, ribosome stalling and stress response**  
Hani Zaher, Associate Professor of Biology, Washington University in St. Louis
Bioengineering Lecture Series
BELS is organized by a committee of Bioengineering and Biophysics graduate students who invite eminent speakers in their areas of research across a broad range of topics in bioengineering. Several lectures are scheduled each term.
Mondays | 4:00 PM | Kerckhoff 119
Staff organizer: Lauren Breeyear

November 2019  
**Satisfying Symmetry: Functional Insights from Patterns in Membrane Protein Structures**  
Lucy Forrest, PI, Computational Structural Biology, National Institutes of Health

Behavioral Social Neuroscience Seminar Series
The BSN seminar series features talks by invited scholars who work on neuroeconomics, behavioral economics, psychology, and behavioral neuroscience. Students enrolled in the BSN PhD program are encouraged to attend and interact with their faculty mentors and colleagues.
Most Thursdays | 4:00 PM | BBB B180
Staff organizer: Barbara Estrada

N/A

Computation and Neural Systems Seminar Series
The second and fourth Monday of each month | 4:00 PM | BBB B180
Staff organizer: Minah Bereal

N/A
Earnest C. Watson Lecture Series
For Almost 80 years, the California Institute of Technology has offered its Earnest C. Watson Lecture Series, and this Winter and Spring are no exceptions. The late Caltech physicist Earnest Watson conceived the series as a public lecture program designed to explain science to the local community.

Wednesday, October 16th, 2019
**Watson Lecture - Causality: From Aristotle to Zebrafish**
Frederick Eberhardt, Professor of Philosophy, Caltech

Wednesday, November 6th, 2019
**Opportunities in Atomic-Scale Legoland: From Novel Electronic Phases to Quantum Devices**
Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science; KNI-Wheatley Scholar, Caltech

Wednesday, December 11th, 2019
**How to Deceive Society: An Insect Masterclass**
Joseph Parker, Assistant Professor Biology and Biological Engineering, Caltech

Wednesday, January 29th, 2020
**The Legacy of the Spitzer Space Telescope**
Thomas Soifer, Harold Brown Professor of Physics, Emeritus; Director, Spitzer Science Center, Caltech

Everhart Lecture Series
The Everhart Lecture Series is a forum encouraging interdisciplinary interaction among graduate students and faculty, the sharing of ideas about research developments, as well as a space to discuss controversies. Everhart Lectures allow for the recognition of individual Caltech student’s exemplary presentation and research abilities. Lectures discuss scientific topics and research topics of concern to graduate students and faculty.

N/A

Kroc Lecture Series
The Kroc Lecture Series is an endowed lectureship in biomedical research named after Ray A. Kroc and Robert L. Kroc; the Kroc Foundation was established to support medical research into human diseases, especially arthritis, diabetes, and multiple sclerosis. Kroc Lectures are scheduled several times a year at the convenience of invited speakers.

N/A
**Norman Davidson Lecture Series**
The Norman Davidson Lecture Series was endowed by Norman Davidson; a scientist with wide-ranging interests. He made important contributions in three different areas, in his early career, he worked in physical and inorganic chemistry. Based on this work he was elected to the National Academy of Science in 1960. In the 1960s till 1980, he was a leading figure in the study of nucleic acids. During this time, his work laid the foundation for understanding nucleic acid hybridization and denaturation, and advanced the use of electron microscopy to map DNA and RNA at the single molecule level. In his later career, he made numerous contributions to molecular neuroscience. His contributions to science have been recognized by numerous awards, including the National Medal of Science in 1996.

N/A

**Wiersma Visiting Professor Lecture Series**
The Cornelis Wiersma Visiting Professor of Neurobiology program was implemented in 2001 with a gift from Cornelis Adrianus Gerrit Wiersma and Jeanne Jacoba Netten Wiersma "for the establishment and perpetuation of a visiting professorship program" in the field of neuroscience. Lectures are scheduled several times a year and integrated into the General Biology Seminar Series.

N/A
<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reem</td>
<td>Abdel-Haq</td>
<td>Biology</td>
</tr>
<tr>
<td>Mohamad</td>
<td>Abedi</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Aiden</td>
<td>Aceves</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Reid</td>
<td>Akana</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Patrick</td>
<td>Almhjell</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Michael</td>
<td>Altermatt</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Enrique</td>
<td>Amaya Perez</td>
<td>Biology</td>
</tr>
<tr>
<td>Michael</td>
<td>Anaya</td>
<td>Biology</td>
</tr>
<tr>
<td>Lucas</td>
<td>Andrade Meirelles</td>
<td>Biology</td>
</tr>
<tr>
<td>Tomas</td>
<td>Aquino</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Jean</td>
<td>Badroos</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Dawna</td>
<td>Bagherian</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Abhik</td>
<td>Banerjee</td>
<td>Biology</td>
</tr>
<tr>
<td>Rachel</td>
<td>Banks</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Alexandra</td>
<td>Barbato</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Jacob</td>
<td>Barlow</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>George</td>
<td>Barnum</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Suzannah</td>
<td>Beeler</td>
<td>Biology</td>
</tr>
<tr>
<td>Jeremy</td>
<td>Bernstein</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Pranav</td>
<td>Bhamidipati</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Prashant</td>
<td>Bhat</td>
<td>Biology</td>
</tr>
<tr>
<td>Paulomi</td>
<td>Bhattacharya</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Zachary</td>
<td>Blumenfeld</td>
<td>Biology</td>
</tr>
<tr>
<td>David</td>
<td>Brown</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Katherine</td>
<td>Brugman</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Shuo</td>
<td>Cao</td>
<td>Biology</td>
</tr>
<tr>
<td>Duncan</td>
<td>Chadly</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Cynthia</td>
<td>Chai</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Tara</td>
<td>Chari</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Linlin</td>
<td>Chen</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Peiwei</td>
<td>Chen</td>
<td>Biology</td>
</tr>
<tr>
<td>Xinhong</td>
<td>Chen</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Zhewei</td>
<td>Chen</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Kevin</td>
<td>Cherry</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Yuen Man Kathy</td>
<td>Cheung</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Chia Yu</td>
<td>Chien</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Hui</td>
<td>Chiu</td>
<td>Biology</td>
</tr>
<tr>
<td>Inha</td>
<td>Cho</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Lucy</td>
<td>Chong</td>
<td>Biology</td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Field</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>William</td>
<td>Chour</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Ke-Huan</td>
<td>Chow</td>
<td>Biology</td>
</tr>
<tr>
<td>Griffin</td>
<td>Chure</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>John</td>
<td>Ciemniecki</td>
<td>Biology</td>
</tr>
<tr>
<td>Samuel</td>
<td>Clamons</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Alexander</td>
<td>Cohen</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Sarah</td>
<td>Cohen</td>
<td>Biology</td>
</tr>
<tr>
<td>Zevin</td>
<td>Condiotte</td>
<td>Biology</td>
</tr>
<tr>
<td>Gerard</td>
<td>Coughlin</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Logan</td>
<td>Cross</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Kim-Marie</td>
<td>Dam</td>
<td>Biology</td>
</tr>
<tr>
<td>Samuel</td>
<td>Davidson</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Eduardo</td>
<td>da Veiga Beltrame</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Alysha</td>
<td>de Souza</td>
<td>Biology</td>
</tr>
<tr>
<td>Andrew</td>
<td>DeLaitsch</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Ke</td>
<td>Ding</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Xiaozhe</td>
<td>Ding</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Mengtong</td>
<td>Duan</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Przemyslaw</td>
<td>Dutka</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Anne</td>
<td>Erickson</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Shannon</td>
<td>Esswein</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Chengcheng</td>
<td>Fan</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Meichen</td>
<td>Fang</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Arash</td>
<td>Farhadi</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Alexander</td>
<td>Farhang</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Abdullah</td>
<td>Farooq</td>
<td>Biology</td>
</tr>
<tr>
<td>Emanuel</td>
<td>Flores Bautista</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Michelle</td>
<td>Fry</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Vahe</td>
<td>Galstyan</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Riley</td>
<td>Galton</td>
<td>Biology</td>
</tr>
<tr>
<td>Angel</td>
<td>Galvez Merchan</td>
<td>Biology</td>
</tr>
<tr>
<td>Shashank</td>
<td>Gandhi</td>
<td>Biology</td>
</tr>
<tr>
<td>Victor</td>
<td>Garcia Ruiz</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Bryan</td>
<td>Gerber</td>
<td>Biology</td>
</tr>
<tr>
<td>Sharareh</td>
<td>Gholamin</td>
<td>Biology</td>
</tr>
<tr>
<td>Sarah</td>
<td>Gillespie</td>
<td>Biology</td>
</tr>
<tr>
<td>David</td>
<td>Goertsen</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Say Tar</td>
<td>Goh</td>
<td>Biology</td>
</tr>
<tr>
<td>Mengsha</td>
<td>Gong</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>James</td>
<td>Gornet</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Jan</td>
<td>Gregrowicz</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Name</td>
<td>Last Name</td>
<td>Department</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Jessica</td>
<td>Griffiths</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Whitney</td>
<td>Griggs</td>
<td>Biology</td>
</tr>
<tr>
<td>Charles</td>
<td>Guan</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Matteo</td>
<td>Guareschi</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Zhannetta</td>
<td>Guzel</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Noah</td>
<td>Guzman</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Andrew</td>
<td>Halleran</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Yanting</td>
<td>Han</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Sho</td>
<td>Harvey</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Masami</td>
<td>Hazu</td>
<td>Biology</td>
</tr>
<tr>
<td>Janis Karan</td>
<td>Hesse</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Andrew</td>
<td>Hill</td>
<td>Biology</td>
</tr>
<tr>
<td>Magnus</td>
<td>Hoffmann</td>
<td>Biology</td>
</tr>
<tr>
<td>Drew</td>
<td>Honson</td>
<td>Biology</td>
</tr>
<tr>
<td>Acacia</td>
<td>Hori</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Alice</td>
<td>Hsu</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Jianyi</td>
<td>Huang</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Jining</td>
<td>Huang</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Xiawei</td>
<td>Huang</td>
<td>Biology</td>
</tr>
<tr>
<td>Robert</td>
<td>Hurt</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Jihyun</td>
<td>Irizarry</td>
<td>Biology</td>
</tr>
<tr>
<td>Tobin</td>
<td>Ivy</td>
<td>Biology</td>
</tr>
<tr>
<td>Claudia</td>
<td>Jette</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Jialong</td>
<td>Jiang</td>
<td>Biology</td>
</tr>
<tr>
<td>Hyeong Chan</td>
<td>Jo</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Robert</td>
<td>Johnson</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Kadina</td>
<td>Johnston</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Victoria</td>
<td>Jorgensen</td>
<td>Biology</td>
</tr>
<tr>
<td>Erik</td>
<td>Jue</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Yon Il</td>
<td>Jung</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Kelly</td>
<td>Kadlec</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Koichiro</td>
<td>Kajikawa</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Manisha</td>
<td>Kapasiawala</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Jonathan</td>
<td>Kenny</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Solomiia</td>
<td>Khomandiak</td>
<td>Biology</td>
</tr>
<tr>
<td>Dongwook</td>
<td>Kim</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Tae Han</td>
<td>Kim</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Yuriko</td>
<td>Kishi</td>
<td>Biology</td>
</tr>
<tr>
<td>Anders</td>
<td>Knight</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Neehar</td>
<td>Kondapaneni</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Alison</td>
<td>Koontz</td>
<td>Biology</td>
</tr>
<tr>
<td>Name</td>
<td>Program</td>
<td>Field</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Matthieu</td>
<td>Kratz</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Rachael</td>
<td>Kuintzle</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Francesco</td>
<td>Lanfranchi</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Matthew</td>
<td>Langley</td>
<td>Biology</td>
</tr>
<tr>
<td>David</td>
<td>Larios Colorado</td>
<td>Biology</td>
</tr>
<tr>
<td>Justin</td>
<td>Lee</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Kyu Hyun</td>
<td>Lee</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Sangjun</td>
<td>Lee</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Can</td>
<td>Li</td>
<td>Biology</td>
</tr>
<tr>
<td>Hongyi</td>
<td>Li</td>
<td>Biology</td>
</tr>
<tr>
<td>Kejun</td>
<td>Li</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Yutian</td>
<td>Li</td>
<td>Biology</td>
</tr>
<tr>
<td>Eric</td>
<td>Liaw</td>
<td>Biology</td>
</tr>
<tr>
<td>Mikel</td>
<td>Lipschitz</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Mengyu</td>
<td>Liu</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Yang</td>
<td>Liu</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>George</td>
<td>Lopez</td>
<td>Biology</td>
</tr>
<tr>
<td>Rebekah</td>
<td>Loving</td>
<td>Biology</td>
</tr>
<tr>
<td>Dongyi</td>
<td>Lu</td>
<td>Biology</td>
</tr>
<tr>
<td>Jialiang</td>
<td>Lu</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Laura</td>
<td>Luebbert</td>
<td>Biology</td>
</tr>
<tr>
<td>Yicheng</td>
<td>Luo</td>
<td>Biology</td>
</tr>
<tr>
<td>Yitong</td>
<td>Ma</td>
<td>Biology</td>
</tr>
<tr>
<td>Huanghao</td>
<td>Mai</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Joseph</td>
<td>Marino</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>John</td>
<td>Marken</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Theresa</td>
<td>Marlin</td>
<td>Biology</td>
</tr>
<tr>
<td>Reed</td>
<td>McCardell</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Nicholas</td>
<td>McCarty</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>James</td>
<td>McGehee</td>
<td>Biology</td>
</tr>
<tr>
<td>Mason</td>
<td>McGill</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Kevin</td>
<td>Mei</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Johan</td>
<td>Melis</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>David</td>
<td>Miller</td>
<td>Biology</td>
</tr>
<tr>
<td>Anastasiya</td>
<td>Moiseyenko</td>
<td>Biology</td>
</tr>
<tr>
<td>Kellan</td>
<td>Moorse</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Aditya</td>
<td>Nair</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Avinash</td>
<td>Nanjundiah</td>
<td>Biology</td>
</tr>
<tr>
<td>Aditi</td>
<td>Narayanan</td>
<td>Biology</td>
</tr>
<tr>
<td>Cai Tong</td>
<td>Ng</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Yu Li</td>
<td>Ni</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Name</td>
<td>First Name</td>
<td>Major</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Thomas O'Connell</td>
<td>Thomas</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Anna Orta</td>
<td>Anna</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Andres Ortiz Munoz</td>
<td>Andres</td>
<td>Biology</td>
</tr>
<tr>
<td>James Ousey</td>
<td>James</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>James Parkin</td>
<td>James</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Richard Paucek</td>
<td>Richard</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Andrew Perez</td>
<td>Andrew</td>
<td>Biology</td>
</tr>
<tr>
<td>Elena Perry</td>
<td>Elena</td>
<td>Biology</td>
</tr>
<tr>
<td>Stefan Petrovic</td>
<td>Stefan</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Giovani Pinton Tomaleri</td>
<td>Giovani</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Francesca Ponce</td>
<td>Francesca</td>
<td>Biology</td>
</tr>
<tr>
<td>William Poole</td>
<td>William</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Sharan Prakash</td>
<td>Sharan</td>
<td>Biology</td>
</tr>
<tr>
<td>Sofia Quinodoz</td>
<td>Sofia</td>
<td>Biology</td>
</tr>
<tr>
<td>Porfirio Quintero Cadena</td>
<td>Porfirio</td>
<td>Biology</td>
</tr>
<tr>
<td>Guruprasad Raghavan</td>
<td>Guruprasad</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Sripriya Ravindra Kumar</td>
<td>Sripriya</td>
<td>Biology</td>
</tr>
<tr>
<td>Manuel Razo Mejia</td>
<td>Manuel</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Kurt Reichermeier</td>
<td>Kurt</td>
<td>Biology</td>
</tr>
<tr>
<td>Tom Roeschinger</td>
<td>Tom</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Matthew Rosenberg</td>
<td>Matthew</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Isabelle Rosenthal</td>
<td>Isabelle</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Tyler Ross</td>
<td>Tyler</td>
<td>Biology</td>
</tr>
<tr>
<td>Alty Rymbek</td>
<td>Alty</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Shyam Saladi</td>
<td>Shyam</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Gabriel Salmon</td>
<td>Gabriel</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Sarah Sam</td>
<td>Sarah</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Charles Sanfiorenzo</td>
<td>Charles</td>
<td>Biology</td>
</tr>
<tr>
<td>Nicholas Sarai</td>
<td>Nicholas</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Anish Sarma</td>
<td>Anish</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Namita Sarraf</td>
<td>Namita</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Scott Saunders</td>
<td>Scott</td>
<td>Biology</td>
</tr>
<tr>
<td>Emily Savela</td>
<td>Emily</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Daniel Sawyer</td>
<td>Daniel</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Andrew Schacht</td>
<td>Andrew</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Lucas Schaus</td>
<td>Lucas</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Samuel Schulte</td>
<td>Samuel</td>
<td>Biology</td>
</tr>
<tr>
<td>Morgan Schwartz</td>
<td>Morgan</td>
<td>Biology</td>
</tr>
<tr>
<td>Sammy Shaker</td>
<td>Sammy</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Tarun Sharma</td>
<td>Tarun</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Yuelin Shi</td>
<td>Yuelin</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Shirin</td>
<td>Shivaei</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Andrey</td>
<td>Shur</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Taylor</td>
<td>Stevens</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Mackenzie</td>
<td>Strehle</td>
<td>Biology</td>
</tr>
<tr>
<td>Christina</td>
<td>Su</td>
<td>Biology</td>
</tr>
<tr>
<td>Arjuna</td>
<td>Subramanian</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Yodai</td>
<td>Takei</td>
<td>Biology</td>
</tr>
<tr>
<td>Sabera</td>
<td>Talukder</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Fayth</td>
<td>Tan</td>
<td>Biology</td>
</tr>
<tr>
<td>Weiyi</td>
<td>Tang</td>
<td>Biology</td>
</tr>
<tr>
<td>John</td>
<td>Thompson</td>
<td>Biology</td>
</tr>
<tr>
<td>Stephanie</td>
<td>Threatt</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Zsofia</td>
<td>Torok</td>
<td>Biology</td>
</tr>
<tr>
<td>Martin</td>
<td>Tran</td>
<td>Biology</td>
</tr>
<tr>
<td>Lev</td>
<td>Tsypin</td>
<td>Biology</td>
</tr>
<tr>
<td>Zeynep</td>
<td>Turan</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Hugo</td>
<td>Urrutia</td>
<td>Biology</td>
</tr>
<tr>
<td>Panteleimon</td>
<td>Vafeidis</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Grigor</td>
<td>Varuzhanyan</td>
<td>Biology</td>
</tr>
<tr>
<td>Varun</td>
<td>Wadia</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Julian</td>
<td>Wagner</td>
<td>Biology</td>
</tr>
<tr>
<td>Sarah</td>
<td>Wandelt</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Connie</td>
<td>Wang</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Jingzhou</td>
<td>Wang</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Ruohan</td>
<td>Wang</td>
<td>Biology</td>
</tr>
<tr>
<td>Sheng</td>
<td>Wang</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Xun</td>
<td>Wang</td>
<td>Biochemistry &amp; Molecular Bioph</td>
</tr>
<tr>
<td>Zitong</td>
<td>Wang</td>
<td>Biology</td>
</tr>
<tr>
<td>Ella</td>
<td>Watkins</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Ella</td>
<td>Watkins-Dulaney</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Jonathan</td>
<td>White</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Steven</td>
<td>Wilbert</td>
<td>Biology</td>
</tr>
<tr>
<td>Rory</td>
<td>Williams</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Alexander</td>
<td>Winnett</td>
<td>Biology</td>
</tr>
<tr>
<td>Bruce</td>
<td>Wittmann</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Wan Rong</td>
<td>Wong</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Fangzhou</td>
<td>Xiao</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Yue</td>
<td>Xu</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Bin</td>
<td>Yang</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Jie-Yoon</td>
<td>Yang</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Yujing</td>
<td>Yang</td>
<td>Biology</td>
</tr>
<tr>
<td>Name</td>
<td>Last Name</td>
<td>Major</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Zhi</td>
<td>Yang</td>
<td>Biochemistry &amp; Molecular Biophysics</td>
</tr>
<tr>
<td>Bryan</td>
<td>Yoo</td>
<td>Biology</td>
</tr>
<tr>
<td>Haoyu</td>
<td>Zhang</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Mark</td>
<td>Zhang</td>
<td>Biology</td>
</tr>
<tr>
<td>Yameng</td>
<td>Zhang</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Wen</td>
<td>Zhou</td>
<td>Biochemistry &amp; Molecular Biophysics</td>
</tr>
<tr>
<td>Ronghui</td>
<td>Zhu</td>
<td>Biology</td>
</tr>
<tr>
<td>Wenying</td>
<td>Zhu</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>Zikun</td>
<td>Zhu</td>
<td>Biology</td>
</tr>
<tr>
<td>Matthew</td>
<td>Zimmer</td>
<td>Biochemistry &amp; Molecular Biophysics</td>
</tr>
<tr>
<td>Dhruv</td>
<td>Zocchi</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Olivia</td>
<td>Zou</td>
<td>Bioengineering</td>
</tr>
</tbody>
</table>
Doctor of Philosophy

Said R. Bogatyrev

Griffin Daniel Chure
(Biochemistry and Molecular Biophysics) A.S., Utah State University 2009; B.S., University of Utah 2013. Thesis: The Molecular Biophysics of Evolutionary and Physiological Adaptation.

Arash Farhadi

Zhannetta V. Gugel

Mikhail Henning Hanewich-Hollatz

Janis Karan Hesse

Robert Francis Johnson

Erik Bradley Jue

Dong-Wook Kim
(Computation and Neural Systems) B.S., Pohang University of Science and Technology 2008; M.S., University of Science and Technology 2010. Thesis: Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior in Mice.

Sangjun Lee

Adam Patrick Neumann

Sofia Agustina Quinodoz
Sripriya Ravindra Kumar  
(Biology) B.Tech., Anna University, Chennai 2010; M.S., University of Illinois at Chicago 2012. Thesis: Engineering Vectors for Non-Invasive Gene Delivery to the Central Nervous System Using Multiplexed-CREATE.

Kurt Michael Reichermeier  

Scott Harrison Saunders  

John Warren Lenzi Thompson  

Bryan B. Yoo  

Dhruv Sergio Zocchi  
Master of Science

Andrew David Halleran  
(Bioengineering) B.S., The College of William & Mary 2016.

Nicholas Samuel McCarty  
(Bioengineering) B.S., The University of Iowa 2017.

Bachelor of Science

Cecelia Jane Andrews Orinda, California Biology

George Heros Daghlian Altadena, California Biology

Ramya Rajiv Deshpande Knoxville, Tennessee Bioengineering and Computer Science (Minor)

Amanda Hazel Dilmore Lake Mary, Florida Biology

Gokul Gowri Bothell, Washington Bioengineering

Sarah L Hou Hawthorn Woods, Illinois Biology

Jade Livingston Edgartown, Massachusetts Biology

Sierra MacKenzie Lopezalles Plainfield, Illinois Biology and History

Amrita Rhoads Tempe, Arizona Bioengineering

Hsuan-Te (Miriam) Sun Diamond Bar, California Biology

Kaitlyn Lee Takata Honolulu, Hawaii Biology

Narmada Gayatri Thayapran Porterville, California Biology

Sophie Jean Walton Emerald Hills, California Bioengineering and Information and Data Sciences (Minor)
<table>
<thead>
<tr>
<th>Financial Support and Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autism Speaks Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegro Ophthalmics LLC</td>
</tr>
<tr>
<td>ARRA National Science Foundation</td>
</tr>
<tr>
<td>Arnold and Mabel Beckman Foundation</td>
</tr>
<tr>
<td>Anne P. and Benjamin F. Biaggini Chair in Biological Sciences</td>
</tr>
<tr>
<td>Army Institute for Collaborative Biotechnology</td>
</tr>
<tr>
<td>Army Research Office</td>
</tr>
<tr>
<td>Anna L. Rosen Professorship</td>
</tr>
<tr>
<td>AMGEN, Inc.</td>
</tr>
<tr>
<td>AMGEN CBEA Award</td>
</tr>
<tr>
<td>AMGEN Graduate Fellowship</td>
</tr>
<tr>
<td>amfAR: The Foundation for AIDS Research</td>
</tr>
<tr>
<td>American Heart Association - AHA</td>
</tr>
<tr>
<td>Allen and Lenabelle Davis Foundation</td>
</tr>
<tr>
<td>American Cancer Society</td>
</tr>
<tr>
<td>Alfred Sloan Foundation</td>
</tr>
<tr>
<td>Albert and Mary Yu Foundation</td>
</tr>
<tr>
<td>Al Sherman Foundation</td>
</tr>
<tr>
<td>Albert and Elaine Borchard Foundation Inc.</td>
</tr>
<tr>
<td>Advanced Research Projects Agency – Energy</td>
</tr>
<tr>
<td>Agouron Foundation</td>
</tr>
<tr>
<td>Air Force Office of Scientific Research</td>
</tr>
<tr>
<td>Balzan Foundation</td>
</tr>
<tr>
<td>Baxter Senior Postdoctoral Fellowship</td>
</tr>
<tr>
<td>Beckman Institute</td>
</tr>
<tr>
<td>Beckman Institute Fund, Moore Grant: Center for Integrative Study of Cell Regulation</td>
</tr>
<tr>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>Bill and Melinda Gates Foundation</td>
</tr>
<tr>
<td>Bill and Melinda Gates Grant: Engineering Immunity</td>
</tr>
<tr>
<td>Binational Science Foundation</td>
</tr>
<tr>
<td>Biotechnology and Biological Sciences Research Council (BBSRC)</td>
</tr>
<tr>
<td>Boswell James G. Foundation</td>
</tr>
<tr>
<td>Bowes Leadership Chair</td>
</tr>
<tr>
<td>Brain &amp; Behavior Research Foundation (NARSAD)</td>
</tr>
<tr>
<td>BRAIN Initiative</td>
</tr>
<tr>
<td>Broad Foundation</td>
</tr>
<tr>
<td>The Broad Institute, Inc.</td>
</tr>
<tr>
<td>Bren Foundation</td>
</tr>
<tr>
<td>Burroughs Welcome Fund</td>
</tr>
<tr>
<td>Cal-Brain</td>
</tr>
<tr>
<td>California Cherry Board</td>
</tr>
<tr>
<td>California HIV/AIDS Research Program</td>
</tr>
<tr>
<td>California Institute for Regenerative Medicine</td>
</tr>
<tr>
<td>Caltech Center for Biological Circuits Design</td>
</tr>
<tr>
<td>Caltech- City of Hope Biomedical Initiative</td>
</tr>
<tr>
<td>Caltech Grubstake Award</td>
</tr>
<tr>
<td>Caltech Innovation Award</td>
</tr>
<tr>
<td>Caltech Innovation Initiative</td>
</tr>
<tr>
<td>Camilla Chandler Frost Fellowship</td>
</tr>
<tr>
<td>Camille and Henry Dreyfus Foundation</td>
</tr>
<tr>
<td>Cancer Research Institute Fellowship</td>
</tr>
<tr>
<td>Cancer Research Institute/ Irvington Institute</td>
</tr>
<tr>
<td>Center for the Advancement of Science in Space</td>
</tr>
<tr>
<td>Center for Environmental Microbial Interactions</td>
</tr>
<tr>
<td>CDMRP Breast Cancer</td>
</tr>
<tr>
<td>Tianqiao and Chrissy Chen Endowment</td>
</tr>
<tr>
<td>Children's Hospital Los Angeles</td>
</tr>
<tr>
<td>Church, Norman W. Endowment</td>
</tr>
<tr>
<td>CHDI Foundation</td>
</tr>
<tr>
<td>CIRM Bridges to Stem Cell Research at Pasadena</td>
</tr>
<tr>
<td>City College</td>
</tr>
<tr>
<td>City of Hope Biomedical Research</td>
</tr>
<tr>
<td>City of Hope</td>
</tr>
<tr>
<td>CIT-UCLA Joint Center for Translational Medicine Program</td>
</tr>
<tr>
<td>Cold Spring Harbor Labs</td>
</tr>
<tr>
<td>Colvin Fund for Research Initiatives in Biomedical Science</td>
</tr>
<tr>
<td>Barney G. Corbin</td>
</tr>
<tr>
<td>Crohn's and Colitis Foundation of America</td>
</tr>
<tr>
<td>Peter Cross</td>
</tr>
<tr>
<td>The Shurl and Kay Curci Foundation</td>
</tr>
<tr>
<td>Cystic Fibrosis Foundation</td>
</tr>
<tr>
<td>Damon Runyon Cancer Research Foundation</td>
</tr>
<tr>
<td>Davis Foundation Fellowship</td>
</tr>
<tr>
<td>Defense Advance Research Project Agency (DARPA)</td>
</tr>
<tr>
<td>DARPA – Diagnostics on Demand (DxOD)</td>
</tr>
<tr>
<td>DARPA – Biological Robustness in Complex Settings (BRICS)</td>
</tr>
<tr>
<td>Defense University Research Instrumentation Program</td>
</tr>
<tr>
<td>Della Martin Foundation</td>
</tr>
<tr>
<td>Department of Energy</td>
</tr>
<tr>
<td>Department of Defense</td>
</tr>
<tr>
<td>Congressionally Directed Medical Research program National Security Science and Engineering Faculty Fellowship</td>
</tr>
<tr>
<td>DNA Sequencer Patent Royalty Funds</td>
</tr>
<tr>
<td>Department of Energy (DOE)</td>
</tr>
<tr>
<td>Donna and Benjamin M. Rosen Center for Bioengineering Pilot Grants</td>
</tr>
<tr>
<td>Dow-Bridge Caltech Innovation Initiative Program (CI2) (Caltech)</td>
</tr>
<tr>
<td>Edward Mallinckrodt Jr. Foundation</td>
</tr>
<tr>
<td>Eli and Edythe Broad Foundation</td>
</tr>
<tr>
<td>Ellison Medical Foundation</td>
</tr>
<tr>
<td>Emerald Foundation</td>
</tr>
<tr>
<td>Ethel and Robert Bowles Professorship</td>
</tr>
<tr>
<td>European Molecular Biology Organization Fellowship</td>
</tr>
<tr>
<td>Ferguson Endowed Fund for Biology</td>
</tr>
<tr>
<td>Fidelity Foundation</td>
</tr>
<tr>
<td>G. Louis Fletcher</td>
</tr>
<tr>
<td>Foundation for NIH Research</td>
</tr>
<tr>
<td>G. Harold &amp; Leila Y. Mathers Charitable Foundation</td>
</tr>
<tr>
<td>George Mason University</td>
</tr>
</tbody>
</table>
Glaxo Smith Kline
Gimbel Discovery Fund in Neuroscience
Gordon & Betty Moore Foundation
Gordon and Betty Moore Cell Center
Gordon Ross Fellowship
Gosney Postdoctoral Fellowship
Gwangju Institute of Science and Technology
Harry Frank Guggenheim Foundation
Helen Hay Whitney Foundation
Hereditary Disease Foundation
Heritage Medical Research Institute
Hertz Fellowship
Hicks Fund for Alzheimer's Research
Hixon, Frank P. Endowment
Howard and Gwen Laurie Smits Professorship in Cell Bio
Howard Hughes Medical Research Institute
Human Frontier Science Program - HFSP
Huntington’s Disease Foundation of America
Huntington Medical Research Institute
ICI2 Caltech
Institute for Collaborative Biotechnologies (ICB)
International Academy of Life Sciences Biomedical Exchange Program
International Rett Syndrome Foundation
Intel Corporation
Jacobs Institute for Molecular Engineering for Medicine (Caltech)
James G. Boswell Foundation
James S. McDonnell Award for Complex Systems
James S. McDonnell Foundation
Jane Coffin Childs Memorial Fund for Medical Research
Japan Science and Technology Agency CREST
Japan Society for the Promotion of Science
Japan, Tamagawa University gCOE (JSTA)
Jacobs Institute for Molecular Engineering for Medicine
JJSI-Caltech Translational Innovation Partnership
John and Ellamae Fehrer Endowed Biomedical Discovery Fund
John M. and Karen E. Garth Professorship in Biology
Johns Hopkins University
John Merck Fund
John Templeton Foundation
Joyce Fund for Alzheimer’s Disease
Juvenile Diabetes Research Foundation
The Kavli Foundation
KAUST Research Fellowship
Kenneth T. & Eileen L Norris Foundation
Kimmel, Sidney Foundation for Cancer Research
Klarman Family Foundation (Steele)
Klingenstein Foundation
Knights Templar Eye Foundation, Inc.
Larry L. Hillblom Foundation
Leidos Biomedical Research, Inc.
Leonard B. Edelman Discovery Fund
Leukemia & Lymphoma Society Fellowship
Louis A. Garfinkle Memorial Laboratory Fund
The Henry Luce Foundation Inc.
Lucille P. Markey Charitable Trust
Mallinckrodt Foundation
March of Dimes Foundation
Margaret Early Medical Research Trust
Mathers Foundation
McGrath Foundation
McKnight Foundation
Merieux Research Institute
Richard Merkin
Melanoma Research Alliance
Mettler Foundation
Michael J. Fox Foundation
Millard and Muriel Jacobs Family Foundation
Mindset Inc
Mitsubishi Chemical Corporation
Moore Foundation
Multi University Research Initiative
Muscular Dystrophy Association
Reddy Nagendranath
National Aeronautics and Space Administration - NASA
National Human Genome Research Institute
National Institute on Aging
National Institute for Biomedical Imaging and Bioengineering
National Institute of Child Health & Human Development
National Institute of Health - 4D Nucleome Project
NIH National Institute of Diabetes and Digestive and Kidney Diseases
National Institute of Health Director’s Office NINDS DR2
National Institute of Health Director’s Pioneer Award
National Institute of General Medical Sciences
National Institute of Health (USPHS)
National Institute of Mental Health - NIMH
National Institute of Neurological Disorders and Stroke - NINDS
National Institute on Aging
National Institute on Drug Abuse
National Institutes of Health - NIH (NCI, NIAID, NIBIB, NINDS, NIVARD, NHGRI, NHLBI, NIGMS, NIDCD, NIDCR, NICHD, NINDS, USPHS)
National Science Council of Taiwan
National Science Foundation – NSF
NIH 4D Nucleome Project
NIH Director’s Early Independence Award
NIH Director’s Pioneer Award
NIH Innovator’s Award
NIH Program Project
NIH-ENCODER Grant
Norman Chandler Professorship in Cell Biology
NRSA
NYSCF
Office of Naval Research
Okawa Foundation
Financial Support and Donors
Annual Report | Biology and Biological Engineering | 2020

Packard Fellowship of Science and Engineering
Packard Foundation, David and Lucile
Pathway to Independence Award

Paul G. Allen Family Foundation
Pew Scholars
Pew Charitable Trusts
Pew-Steward Scholar for Cancer Research
Pritzker Neurogenesis Research Consortium
PROMOS Program
Protabist, Inc.
Prostate Cancer Foundation

Ragon Institute of MGH
Ralph Schlaeger Charitable Foundation
Raymond and Beverly Sackler Foundation
Rita Allen Foundation
Rockefeller Foundation
Rose Hill Foundation
Rosen Center
Terry Rosen
Rosen Scholarships in Bioengineering
Ruth Kirschstein Postdoctoral Fellowship

Sackler Foundation
Sanofi-Aventis
Richard Scheller
Schwab Charitable Fund
Searle Foundation
Searle Scholar Program
Shaw Family Endowment Fund
Sherman Fairchild Foundation
Sidney Kimmel Foundation
Silicon Valley Community Foundation
Simons Foundation
Skirball Foundation
Slavik, Paul
Sleep Research Society Foundation
Sloan Foundation
Songtag Foundation
Swartz Foundation
Swedish Research Council
Swiss National Science Foundation

Tamagawa University of Brain Science Institute Program
Targacept, Inc.
Technology Transfer Grubstake Award
Thomas Hartman Foundation for Parkinson's Disease
Thome Memorial Foundation
Trimble, Charles
Troendle, Lois and Victor Endowment

UCLA Star Program
Uehara Fellowship
University of California, Tobacco-Related Disease Research Program
U.S. Army Office, Institute for Collaborative Biotechnologies
U.S. Department of Defense, Defense Advancement Research Projects Agency (DARPA)
U.S. Office of Naval Research

Vanguard Charitable Endowment in Memory of Bently Pritsker
Thomas Vrebalovich
Shannon Yamashita
Weston Havens Foundation
Whitehall Foundation
William D. Hacker Trust
William K. Bowes Jr. Foundation

Yamaha Motor Co., Ltd.
Stephen L. Mayo  
*William K. Bowes Jr. Leadership Chair*

Richard Murray  
*William K. Bowes Jr. Leadership Chair (as of June 2020)*

Michael Elowitz  
*Executive Officer for Biological Engineering*

Thanos Siapas  
*Executive Officer for Computation and Neural Systems*

Markus Meister  
*Executive Officer for Neurobiology*

Dianne K. Newman  
*Executive Officers for Molecular Biology*

**PROFESSORS EMERITI**

- John N. Abelson, Ph.D.  
  *George Beadle Professor of Biology*

- Charles J. Brokaw, Ph.D.  
  *Professor of Biology*

- John J. Hopfield, Ph.D.  
  *Roscoe G. Dickinson Professor of Chemistry and Biology*

- Masakazu Konishi  
  *Bing Professor of Behavioral Biology*

- Jean-Paul Revel, Ph.D.  
  *Albert Billings Ruddock Professor of Biology*

- Melvin I. Simon, Ph.D.  
  *Anne P. and Benjamin F. Biaggini Professor of Biological Sciences*

- James H. Strauss, Ph.D.  
  *Ethel Wilson Bowles and Robert Bowles Professor of Biology*

**SENIOR RESEARCH ASSOCIATES EMERITI**

- R. Andrew Cameron, Ph.D.
- Anne Chomyn, Ph.D.
- Ellen G. Strauss, Ph.D.

**PROFESSORS**

- Ralph Adolphs, Ph.D.  
  *Bren Professor of Psychology and Neuroscience; Professor of Biology; Allen V. C. Davis and Lenabelle Davis Leadership Chair, Caltech Brain Imaging Center; Director, Caltech Brain Imaging Center*

- John M. Allman, Ph.D.  
  *Frank P. Hixon Professor of Neurobiology*
Richard A. Andersen, Ph.D.
James G. Boswell Professor of Neuroscience; T&C Chen Brain-Machine Interface Center Leadership Chair; Director, T&C Brain-Machine Interface Center

David J. Anderson, Ph.D.
Seymour Benzer Professor of Biology; Tianqiao and Chrissy Chen Institute for Neuroscience Leadership Chair; Investigator, Howard Hughes Medical Institute; Director, Tianqiao and Chrissy Chen Institute for Neuroscience

Alexei A. Aravin, Ph.D.
Professor of Biology

Frances H. Arnold, Ph.D.
Nobel Laureate; Linus Pauling Professor of Chemical Engineering, Bioengineering, and Biochemistry; Director, Donna and Benjamin M. Rosen Bioengineering Center

David Baltimore, Ph.D., D.Sc.h.c., D.Phil.h.c.
Nobel Laureate; President Emeritus; Robert Andrews Millikan Professor of Biology

Pamela Bjorkman, Ph.D.
Centennial Professor of Biology

Marianne Bronner, Ph.D.
Albert Billings Ruddock Professor of Biology; Executive Officer for Neurobiology

Long Cai, Ph.D.
Professor of Biology and Biological Engineering

Judith L. Campbell, Ph.D.
Professor of Chemistry and Biology

David C. Chan, M.D., Ph.D.
Professor of Biology

Michael H. Dickinson, Ph.D.
Esther M. and Abe M. Zarem Professor of Bioengineering

William G. Dunphy, Ph.D.
Grace C. Steele Professor of Biology

Michael Elowitz, Ph.D.
Professor of Biology and Bioengineering; Investigator, Howard Hughes Medical Institute; Executive Officer for Biological Engineering

Morteza Gharib, Ph.D.
Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies
Lea Goentoro, Ph.D.  
*Professor of Biology*

Viviana Gradinaru, Ph.D.  
Professor of Neuroscience and Biological Engineering; Investigator, Heritage Medical Research Institute; Director, Center for Molecular and Cellular Neuroscience

Bruce A. Hay, Ph.D.  
*Professor of Biology*

Rustem F. Ismagilov, Ph.D.  
*Ethel Wilson Bowles and Robert Bowles Professor of Chemistry and Chemical Engineering; Director of the Jacobs Institute for Molecular Engineering for Medicine*

Grant J. Jensen, Ph.D.  
*Professor of Biophysics and Biology; Investigator, Howard Hughes Medical Institute*

Mary B. Kennedy, Ph.D.  
*Allen and Lenabelle Davis Professor of Biology*

Henry A. Lester, Ph.D.  
*Professor of Biology*

Stephen L. Mayo, Ph.D.  
Bren Professor of Biology and Chemistry; William K. Bowes Jr. Leadership Chair, Division of Biology and Biological Engineering

Sarkis Mazmanian, Ph.D.  
*Luis B. and Nelly Soux Professor of Microbiology; Investigator, Heritage Medical Research Institute*

Markus Meister, Ph.D.  
Anne P. and Benjamin F. Biaggini Professor of Biological Sciences; Executive Officer for Neurobiology

Elliot M. Meyerowitz, Ph.D.  
George W. Beadle Professor of Biology; Investigator, Howard Hughes Medical Institute

Richard Murray, Ph.D.  
Thomas E. and Doris Everhart Professor of Control and Dynamical Systems and Bioengineering

Dianne K. Newman, Ph.D.  
Gordon M. Binder/Amgen Professor of Biology and Geobiology; Allen V.C. Davis and Lenabelle Davis Leadership Chair, Center for Environmental Microbial Interactions; Executive Officer for Molecular Biology

Lior S. Pachter, Ph.D.  
Bren Professor of Computational Biology and Computing and Mathematical Sciences

Paul W. Sternberg, Ph.D.  
Bren Professor of Biology
Doris Y. Tsao, Ph.D.
Professor of Biology; T&C Chen Center for Systems Neuroscience Leadership Chair; Investigator, Howard Hughes Medical Institute; Director, T&C Chen Center For Systems Neuroscience

Robert B. Phillips, Ph.D.
Fred and Nancy Morris Professor of Biophysics, Biology and Physics

Niles A. Pierce, Ph.D.
Professor of Applied and Computational Mathematics and Bioengineering

David Prober, Ph.D.
Professor of Biology

Ellen Rothenberg, Ph.D.
Albert Billings Ruddock Professor of Biology

Michael L. Roukes, Ph.D.
Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering

Shinsuke Shimojo, Ph.D.
Gertrude Baltimore Professor of Experimental Psychology

Athanassios (Thanos) G. Siapas, Ph.D.
Professor of Computation and Neural Systems; Executive Officer for Computation and Neural Systems

Angelike Stathopoulos, Ph.D.
Professor of Biology

Alexander J. Varshavsky, Ph.D.
Thomas Hunt Morgan Professor of Cell Biology

Erik Winfree, Ph.D.
Professor of Computer Science, Computation and Neural Systems, and Bioengineering

Barbara J. Wold, Ph.D.
Bren Professor of Molecular Biology

Changhuei Yang, Ph.D.
Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering

Magdalena (Magda) Zernicka-Goetz
Bren Professor of Biology and Biological Engineering

Kai Zinn, Ph.D.
Professor of Biology
ASSISTANT PROFESSORS

Mitchell Guttman, Ph.D.
Assistant Professor of Biology; Investigator, Heritage Medical Research Institute

Elizabeth Hong, Ph.D.
Clare Boothe Luce Assistant Professor of Neuroscience

Yuki Oka, Ph.D.
Assistant Professor of Biology

Joseph Parker, Ph.D.
Assistant Professor of Biology and Biological Engineering

Lulu Qian, Ph.D.
Assistant Professor of Bioengineering

Matt Thomson Ph.D.
Assistant Professor of Computational Biology; Investigator, Heritage Medical Research Institute

David Van Valen Ph.D.
Assistant Professor of Biology and Biological Engineering

Rebecca Voorhees Ph.D.
Assistant Professor of Biology and Biological Engineering; Investigator, Heritage Medical Research Institute

Kaihang Wang Ph.D.
Assistant Professor of Biology and Biological Engineering

RESEARCH PROFESSORS

Katalin (Kata) Fejes Toth
Research Professor of Biology and Biological Engineering

Akiko Kumagai
Research Professor of Biology

Carlos Lois
Research Professor

Daniel Wagenaar
Research Professor of Biology and Biological Engineering

Isabelle Peter
Research Professor of Biology and Biological Engineering

Mary Yui
Research Professor of Biology and Biological Engineering
LECTURERS
Brooke Anderson
Justin Bois, Ph.D.
Lindsay Bremner, Ph.D.
Andres Collazo, Ph.D.
Julie Hoy, Ph.D.
Sarah MacLean
Danny Petrasek, M.D., Ph.D
Carol Chace Tydell, DVM

MEMBERS OF THE PROFESSIONAL STAFF
Tyson Affalo, Ph.D.
Igor Antoshechkin, Ph.D.
Janet F. Baer, D.V.
Elizabeth Bertani, Ph.D.
Stijn Cassenaer, Ph.D.
Vasileios Christopoulous, Ph.D.
Bruce Cohen, Ph.D.
Andreas Collazo, Ph.D.
Ben Deverman, Ph.D.
Rochelle A. Diamond, B.A.
Spencer Kellis, Ph.D.
Ali Khoshman, Ph.D.
Eugene Lebenov, Ph.D.
Kaushiki Menon, Ph.D.
Hans-Michael Muller, Ph.D.
Alex Nisthal, Ph.D.
Ker-hwa Ou, M.S.
Shirley Pease, B.Sc.

SENIOR FACULTY ASSOCIATES
Alice S. Huang, Ph.D.

VISITING ASSOCIATES
Takuya Akashi, Ph.D.
Clare Baker, Ph.D.
Elaine L. Bearer, Ph.D., M.D.
William Caton III, M.D.
Raymond Deshaies, Ph.D.
Scott Fraser, Ph.D.
Jordi Garcia-Ojalvo, Ph.D.
Elizabeth E. Glater
Ingileif Bryndis Hallgrimsdottir Ph.D.
Elaine Hsiao, Ph.D.
Brian Lee, M.D., Ph.D.
Carmel Levitan, Ph.D.
Charles Liu, M.D., Ph.D.
John P. Mccutcheon, Ph.D.
Eric Mjolsness, Ph.D.
Sonja Hess, Dr. rer. nat.

MEMBERS OF THE BECKMAN INSTITUTE

POSTDOCTORAL SCHOLARS
MichaelAbrams Ph.D.
Eldad Afik, Ph.D.
Zsuzsa Akos, Ph.D.
Maria Ashaber, Ph.D.
Amjad Askary, Ph.D.
Stefan Badelt, Ph.D.
Namrata Bali, Ph.D.
Pinglei Bao, Ph.D.
Christopher Barnes, Ph.D.
Luke Bashford, Ph.D.
Selvan Bavan, Ph.D.
Amir H. Behbahani, Ph.D.
Brittany Belin, Ph.D.
Nathan M. Belliveau, Ph.D.
Kalil Bera, Ph.D.
Christopher Charles Berger, Ph.D.
Mario Blanco, Ph.D.
Adrian Brueckner, Ph.D.
Mark Budde, Ph.D.
Elsy C. Buitrago Delgado, Ph.D.
Mengyi Cao, Ph.D.
Stephen Carter, Ph.D.
Yogaditya Chakrabarty, Ph.D.
Collin Challis, Ph.D.
Rosemary Challis, Ph.D.
Chun-Hao Chen, Ph.D.
Anjalika Chongtham, Ph.D.
George Chreifi, Ph.D.
Matthew Q. Clark, Ph.D.
Aaron Thomas Coey, Ph.D.
Roman A. Corfas, Ph.D.
Kurt M. Dahlstrom, Ph.D.
RajibDas-Gupta Schubert, Ph.D.
Sarah J.K. Denny, Ph.D.
William DePas, Ph.D.
Gilbert Desalvo, Ph.D.
Bradley Dickerson, Ph.D.
Fangyuan Ding, Ph.D.
Kristina Verena Dylla, Ph.D.
Haraku Ebisu, Ph.D.
Christopher J. Fiorse, Ph.D.
Katherine Irene Fisher, Ph.D.
Andrew Flyak, Ph.D.

SENIOR POSTDOCTORAL SCHOLARS
Sreeram Balasubramanian, Ph.D.
Megan Bergkessel, Ph.D.
Shun Jia Chen, Ph.D.
Brian Duistermans, Ph.D.
Stephen Green, Ph.D.
Hiroyuki Hosokawa, Ph.D.
Collin Kieffer, Ph.D.
Daniel Allen Lee, Ph.D.
Devdoot Majumdar, Ph.D.
Mati Mann, Ph.D.
Lam Nguyen, Ph.D.
Grigoris Oikonomou, Ph.D.
Maria Papadopoulou, Ph.D.
Hillel Schwartz Ph.D.
Gil Sharon, Ph.D.
Chun-Shik Shin, Ph.D.
Chanpreet Singh, Ph.D.
Beth Stadtmueller, Ph.D.
Grigory Tikhomirov, Ph.D.
Moriel Zelikowsky, Ph.D.

POSTDOCTORAL SCHOLARS

POSTDOCTORAL SCHOLARS
Walter Gabriel Gonzalez, Ph.D.  
Alejandro Adrian Granados Castro, Ph.D.  
Leopold N. Green, Ph.D.  
Alon Grinbaum, Ph.D.  
Harry Gristick, Ph.D.  
Livia Hecke Morais, Ph.D.  
Graham Heimberg, Ph.D.

Ulrich Herget, Ph.D.  
Shao-Min Hung, Ph.D.  
Erica Hutchins, Ph.D.  
Joanna Jachowicz, Ph.D.  
Min Jee Jang, Ph.D.  
Alok Joglekar, Ph.D.  
Anat Kahan, Ph.D.  
Mohammed Kaplan, Ph.D.  
Tomomi Karigo, Ph.D.  
Ann Kennedy, Ph.D.  
Theodora Koromila, Ph.D.

Ezgi Kunttas-Tatli, Ph.D.  
Katherine J. Leitch, Ph.D.  
Guideng Li, Ph.D.  
Lingyun Li, Ph.D.  
Pulin Li, Ph.D.  
Ting Li, Ph.D.  
Wei Li, Ph.D.  
Yuwei Li, Ph.D.  
Yihan Lin, Ph.D.  
Theodore Lindsay, Ph.D.  
Lu Liu, Ph.D.  
Francisco Luongo, Ph.D.  
Ke Lyu, Ph.D.

Frank Macabenta, Ph.D.  
Shrawan Mageswaran, Ph.D.  
Vishal Maingi, Ph.D.  
Megan Martik, Ph.D.  
Tara Mastro, Ph.D.  
Artem V. Menykov, Ph.D.  
Lauren Ann Metskas, Ph.D.  
Erick Moen, Ph.D.  
Georg Oberhofer, Ph.D.  
Noah Ollikainen, Ph.D.  
Saidhhe L. O’Riordan, Ph.D.  
Davi Ortega Ribeiro, Ph.D.  
Nicolas Pelaez Restrepo, Ph.D.  
Michael Louis Placentino, Ph.D.  
Tino Pleiner, Ph.D.  
Michael Polonsky, Ph.D.  
Allen Herman Pool, Ph.D.  
Ignat Printsev, Ph.D.  
Mu Qiao, Ph.D.  
Lisa Racki, Ph.D.  
Gustavo Rios, Ph.D.  
John Elliot Robinson, Ph.D., M.D.  
Ivo Ros, Ph.D.  
Yuan Ruan, Ph.D.  
Satya Prakash Rungta, Ph.D.  
Sofia Sakellardi, Ph.D.  
Luis Oscar Sanchez Guardado, Ph.D.  
Henry Schreiber, Ph.D.  
Liang She, Ph.D.  
Anil Kumar Shukla, Ph.D.  
Melanie A. Spero, Ph.D.  
Vincent Andrew Stepanik, Ph.D.  
Poorna Subramanian, Ph.D.  
Jingjing Sun, Ph.D.  
Calle Valentine Svensson, Ph.D.  
Akshay Tambe, Ph.D.  
Qing Tang, Ph.D.  
Yusuke Tomina, Ph.D.  
Huy Ngoc Steven Tran, Ph.D.  
Jennifer Treweek, Ph.D.  
Jonathon Exiquio Valencia, Ph.D.  
Bo Wang, Ph.D.  
Han Wang, Ph.D.  
Brandon Weissbourd, Ph.D.  
Joseph Wekselblatt, Ph.D.  
Jin Xu, Ph.D.  
Takako Yamamoto (Ichiki), Ph.D., D.D.S.  
Qing Yao, Ph.D.  
Hanako Yashiro, Ph.D.  
An Zhang, Ph.D.  
Carey Zhang, Ph.D.  
Jun Zhang, Ph.D.  
Lujia Zhang, Ph.D.  
Rong Wei Zhang, Ph.D.  
Yuan Zhao, Ph.D.  
Hanako Yashiro, Ph.D.  

Visitors  
Libera Berghella, Ph.D.  
Michael Marks, Ph.D.  
Kenji Oki, Ph.M.  
Andrea Cerase, Ph.D.  
Daria Eysunina, Ph.D.  
Constantine Evans, Ph.D.  
Danielle Grotjahn, Ph.D.  
Jan Kaminski, Ph.D.  
Rajan Kulkarni, Ph.D.  
Anton Kuzmenko, Ph.D.  
John Brian McManus, Ph.D.  
Jasna Markovac, Ph.D.  
Alex Nisthal, Ph.D.  
David J. Sherman, Ph.D.  
Judith Su, Ph.D.  
Jonas Ungerback, Ph.D.  
Yanling Wang, Ph.D.  
Kyongsik Yun, Ph.D.
Bren Professor of Psychology and Neuroscience, Professor of Biology
Ralph Adolphs

Visiting Associates
Laura Harrison, Adam Mamelak, Ueli Rutishauser, Wolfram Schultz, Damian Stanley, Julien Dubois, Shuo Wang, Anita Tusche, Juri Minxha, Daniel Kennedy

Postdoctoral Fellows
Umit Keles, Dorit Kliemann, Chujun Lin, David Kahn, Zhongzheng Brooks Fu

Graduate Students
Yanting Han

Research Staff
Tim Armstrong, Remya Nair

Senior Research Staff
Lynn Paul

Member of the Professional Staff
J. Michael Tyszka

Administrative Assistant
Sheryl Cobb

Lab Website

Financial Support
National Institute of Mental Health
The Simons Foundation

EMOTIONAL AND SOCIAL COGNITION IN HUMANS

Our laboratory investigates the psychological and neural bases of social cognition, using a number of different approaches. Some studies focus on the psychological level, using behavioral data from healthy people to make inferences about how emotion modulates memory, attention, or conscious awareness.
A second approach uses neuroimaging and electrophysiology to investigate the neural mechanisms behind emotional and social processing. A third approach studies the performances, and the brains, of special populations. At Caltech, we have been recruiting people with agenesis of the corpus callosum to investigate the functional consequences of disruption in long-range connectivity. Dr. Lynn Paul leads this work. In collaboration with Joe Piven at the University of North Carolina, we have also been studying people with autism. At the University of Iowa, we have ongoing collaborations that involve neurological populations with focal brain lesions, and, together with hospitals in the Los Angeles region, which involve neurosurgical patients in whom we can record intracranially.

A major focus in the past year has been on making comparisons across some of these populations and approaches. For instance, we are comparing people with autism and with amygdala lesions tested on the same tasks. Many of these comparative studies build on years of data accrual in our laboratory involving a significant amount of work by our staff, as well as the graduate students and post-docs. A second area where we are making comparisons is across methods. For instance, we are comparing responses measured in the amygdala to features of faces, and doing so using both the signal typically measured in fMRI studies (the BOLD response), as well as recording action potentials from single neurons in neurosurgical patients who have depth electrodes in the amygdala. Finally, we are continuing to collaborate with colleagues in the social sciences at Caltech who bring a model-based approach to understanding human behavior. Taken together, these studies of social cognition across a variety of populations, using multiple measures, and complemented with computational modeling, are giving us powerful insights not only into how specific structures might work (like the amygdala), but also how they might function in a network of multiple components. Extending our understanding of social cognition to the systems level, and examining the connections between different brain regions, constitutes a major thrust for future studies in our laboratory.

PUBLICATIONS

2019


2018


Adolphs, R., Andler D. (2018). “Author Response: We don’t yet know what emotions are (but need to develop the methods to find out).” Emotion Review 10: 233-236. NIHMSID 986619.


2017


2016


2015


GENE EXPRESSION IN ALZHEIMER’S DISEASE

We are continuing our investigation of gene expression with RNAseq in cerebral cortex from autopsy brains in elderly people who were cognitively un-impaired, had mild cognitive impairment or had Alzheimer’s disease in collaboration with Prof. Barbara Wold and her laboratory, and with Prof. David Bennett and his colleagues at the Rush University Alzheimer's Disease Center. These data reveal a strong changes in expression for genes encoding proteins related to circadian rhythms, axon maintenance, synaptic functioning and the re-engagement of genes related to neural development as the disease progresses. We are extending these observations to the cellular and subcellular domains with fluorescent immuns and in situ hybridizations (FISH) using technology developed by Prof Long Cai and colleagues.

ANALYSIS OF HUMAN CONNECTOME DATASET OF MRI AND BEHAVIORAL VARIABLES

Dr. Ryan Cabeen and Prof. Art Toga (USC) and I are analyzing the Human Connectome Project data which contain structural and diffusion MR imaging as well as extensive behavioral data for nearly a thousand subjects. We have found a strong negative relationship between cortical microstructure in frontoinsular cortex and amygdala and THC use. We have also found strong positive associations in cortical microstructure in frontoinsular cortex with life satisfaction. We plan to extend these findings
based on young adults across the lifespan from infancy to extreme old age in the extended Human Connectome Database.

**IMAGING THE BRAIN OF AN AFRICAN ELEPHANT**

Dr. Ryan Cabeen, Art Toga (USC) and I are imaging the brain of an African elephant with structural and diffusion imaging. From these data are mapping cortical microstructure and fiber connections between frontoinsular cortex and other parts of the brain. We also are mapping the motor pathways associated with control of the muscles of the trunk, an unique specialization in elephants. We will also use these data to construct maps of the unfolded cerebral and cerebellar cortex in collaboration with Prof. Martin Sereno at California State University, San Diego.

**PUBLICATIONS**

**2020**


**2016**


**2015**

James G. Boswell Professor of Neuroscience; Tianqiao and Chrissy Chen Brain Machine Interface Center Leadership Chair; Director, Brain Machine Interface Center
Richard A. Andersen

Visiting Associates
Brian Lee, Charles Liu, Dan Kramer, Vasileios Christopoulos

Professional Staff
Tyson Aflalo

Research Fellows
Sofia Sakellaridi, Luke Bashford, Sumner Norman, David Bjanes, Jorge Gamez de Leon

Graduate Students
Matiar Jafari HyeongChan Jo, Srinivas Chivukula, Whitney Griggs, Charles Guan, Kelly Kadlec, Isabelle Rosenthal, Sarah Wandelt

Research and Laboratory Staff
Kelsie Pejsa, Viktor Shcherbatyuk

Honors:
Keynote Speaker, the Aleph, the Art and Science Festival, Universidad Nacional Autonoma de Mexico
Adrian Lecture, University of Cambridge
Blumenbach Lecture, University of Gottingen

Support
James G. Boswell Foundation
Chen Institute
National Institutes of Health (USPHS)
National Science Foundation
Swartz Foundation
Della Martin Foundation
University of Washington

Images from left to right:
Functional magnetic resonance imaging of human during movement planning
Schematic of concept of a cognitive neural prosthesis
Area of the posterior parietal cortex involved in planning different actions
Neural mechanisms for visual-motor integration. While the concept of artificial intelligence has received a great deal of attention in the popular press, the actual determination of the neural basis of intelligence and behavior has proven to be a very difficult problem for neuroscientists. Our behaviors are dictated by our intentions, but we have only recently begun to understand how the brain forms intentions to act. The posterior parietal cortex is situated between the sensory and the movement regions of the cerebral cortex and serves as a bridge from sensation to action. We have found that an anatomical map of intentions exists within this area, with one part devoted to planning eye movements and another part to planning arm movements. The action plans in the arm movement area exist in a cognitive form, specifying the goal of the intended movement rather than particular signals to various muscle groups.

Neuroprosthetics. One project in the lab is to develop a cognitive-based neural prosthesis for paralyzed patients. This prosthetic system is designed to record the electrical activity of nerve cells in the posterior parietal cortex of paralyzed patients, interpret the patients' intentions from these neural signals using computer algorithms, and convert the "decoded" intentions into electrical control signals to operate external devices such as a robot arm, autonomous vehicle or a computer. We are currently performing clinical studies with two tetraplegic subjects who use intent signals from the posterior parietal cortex to control a robotic limb and a computer cursor.

Coordinate frames. Our laboratory examines the coordinate frames of spatial maps in cortical areas of the parietal cortex coding movement intentions. One new discovery is the finding of a novel, "relative" coordinate frame used for hand-eye coordination. Neurons in the dorsal premotor cortex and area 5d of posterior parietal cortex encode the position of the eye to the target and the position of the hand to the target. Interestingly the dorsal premotor cortex also encodes the relative position of the hand to the eye. A similar relative coding may be used for other tasks that involve the movements of multiple body parts such as bimanual movements.

Local field potentials. The cortical local field potential (LFP) is a summation signal of excitatory and inhibitory dendritic potentials that has recently become of increasing interest. We have reported that LFP signals in the saccade and reach regions provide information about the direction of planned movements, as well as the state of the animal; e.g., baseline, planning a saccade, planning a reach, executing a saccade, or executing a reach. This new evidence provides further support for a role of the parietal cortex in movement planning. It also shows that LFPs can be used for neural prosthetics applications. Since LFP recordings from implanted arrays of electrodes are more robust and do not degrade as much with time compared to single cell recordings, this application is of enormous practical importance. We have also been comparing the correlation of spikes in one area with LFPs in another to determine how cortical areas communicate with one another during different tasks.

Compensation by cortical circuits. We are currently performing functional magnetic resonance imaging (fMRI) experiments in awake, behaving non-human primates (NHPs). This technique is important since fMRI experiments are routinely done in humans and monitor the changes in blood flow during different cognitive and motor tasks. However, a direct correlation of brain activity with blood flow cannot be achieved in humans, but can in NHPs. Thus, the correlation of cellular recording and functional MRI activation in NHPs provides us with a better understanding of the many experiments currently being performed in humans. Moreover, temporarily inactivating parts of cortex in NHPs during brain scanning enables the determination of how brain circuits adjust to compensate for inactivation. In the future we
will use electrical stimulation of cortical areas determined by fMRI to be active during the compensation process. These studies are aimed at developing medical devices that can accelerate brain repair from traumatic brain injury and stroke.

PUBLICATIONS

2019


2018


David J. Anderson
Seymour Benzer Professor of Biology; Investigator, Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience Leadership Chair; Director, Tianqiao and Chrissy Chen Institute for Neuroscience

Research Fellows
Brian Duistermars, Eric Hoopfer, Tomomi Karigo, Ann Kennedy, Lingyun Li, George Mountoufaris, Kiichi Watanabe, Brady Weissbourd, Moriel Zelikowsky, Stefanos Stagkourakis, Amit Vinograd, Joe Ouadah

Graduate Students
Vivian Chiu, Keke Ding, Yonil Jung, Dong Wook Kim, Zeynep Turan, Bin Yang, Mengyu Liu, Shuo Cao

Research and Laboratory Staff
Jung-Sook Chang, Celine Chiu, Xiaolin Da, Yi (Helen) Huang, Charlene Kim, Gina Mancuso, Arnold Sanchez, Xiao Wang,

Lab Website

Financial Support
Brain & Behavior Research Foundation (formerly NARSAD)
Della Martin Foundation
European Molecular Biology Organization
Helen Hay Whitney Foundation
Howard Hughes Medical Institute
The Human Frontier Science Program
Life Sciences Research Foundation
L’Oreal USA
National Eye Institute
National Institutes of Health
National Institutes of Mental Health
National Institute on Drug Abuse
National Institute of Neurological Disorders and Strokes
Simons Foundation
The Charles Trimble Fund
Tianqiao and Chrissy Chen Institute

Images from left to right:
Professor David Anderson
Aggression neurons in the fly
Aggression neurons in the mouse hypothalamus
Honors and Awards
2016 Abraham Spector Prize
2017 17th Perl-UNC Neuroscience Prize
2018 Edward M. Scolnick Prize in Neuroscience

Special Lectures
2017 Keynote speaker, Francis Crick Symposium, Cold Spring Harbor Asia
2017 Sackler Lecture, Yale
2018 Cell Press-TNQ India Distinguished Lectureship Series
2018 Granit Lecture, Karolinska Institute
2019 Gunter Blobel Tribute and Bronk lectures, Rockefeller
2019 Barondes Lecture, UCSF
2019 Mong Lecture, Cornell
2019 Detlev W. Bronk Alumni Lecture in honor of Gunter Blobel, Rockefeller University
2019 Keynote Lecture, International Basal Metazoan Meeting, Evangelische Akademie, Tutzing Germany

GENETIC DISSECTION OF NEURAL CIRCUITS CONTROLLING EMOTIONAL BEHAVIORS

Research in this laboratory is aimed at understanding the neurobiology of emotion, using the laboratory mouse and the vinegar fly (Drosophila melanogaster) as model organisms. Our view is that 'emotional behaviors' are a class of behaviors that are associated with internal emotion states, and that these states have general properties, such as persistence, scalability and valence, which generalize across different species and different emotions, whether or not there is any conscious awareness of these states (Anderson and Adolphs, 2014). We seek to elucidate how these general properties are encoded in the circuitry and chemistry of the brain, and how they influence behavioral responses triggered by particular sensory stimuli. Our work is inspired both by Tinbergen and Darwin, and focuses on instinctive behaviors such as mating, fighting, feeding and freezing (the "Four F's"). To approach these questions, we use genetically based tools to mark, map, and monitor and functionally manipulate specific neural circuits identified using molecular markers. The technologies we employ include optogenetics, pharmacogenetics, in vivo and slice electrophysiology, 2-photon calcium imaging, virally based connectional tracing, and quantitative behavioral analysis. In collaboration with Pietro Perona, Allen E. Puckett Professor of Electrical Engineering, we are applying machine vision- and machine learning-based approaches (Dankert et al., 2009, Hong et al. 2015) to automate the measurement of complex social behaviors in both flies and mice.

Emotion circuits in mice and Drosophila
A central focus of our research is aimed at understanding the functional organization of neural circuits that control aggression and related social behaviors. In *Drosophila*, we have identified a common molecular target of genetic and environmental influences on aggression (Wang et al., 2008), as well as volatile and non-volatile pheromones that control this behavior (Wang and Anderson, 2010, 2011). More recently, we have identified a highly restricted population of male-specific neurons that controls aggression, but not other sex-specific behaviors such as courtship, in *Drosophila* (Asahina et al., 2014). These neurons release a neuropeptide (*Drosophila* Tachykinin, or DTK) whose vertebrate homologs (Substance P and tachykinin 2) play a role in the control of aggression in mice, rats and cats. Using unbiased large-scale functional screens of collections of GAL4 lines that mark different populations of neurons, we are now systematically identifying components of the aggression circuitry and their relationship to circuits that control mating behavior.

Our work on mouse aggression has been inspired by the work of Walter Hess (1928), who was the first to demonstrate that electrical stimulation of certain regions of the hypothalamus in cats could elicit aggressive displays. We have pursued two major questions raised by these and follow-up studies over the last 70 years: what is the identity of the hypothalamic neurons that control aggressive behaviors, and what is their relationship to neurons controlling related social behaviors such as mating? By performing single-unit recordings from the ventromedial hypothalamic nucleus (VMH) of awake, behaving mice, we have found that this tiny nucleus contains heterogeneous cells activated during fighting, mating or both (Lin et al., 2011). Dramatically, optogenetic activation of VMHvl neurons is sufficient to elicit attack (Lin et al., 2011). These studies have opened up the study of aggression circuits in mice using modern genetically based tools.

More recently, we have genetically identified a population of ~2,000 neurons in VMHvl that express the type 1 Estrogen Receptor (Esr1), which are both necessary and sufficient for attack behavior (Lee et al., 2014). Unexpectedly, graded optogenetic activation of this population promoted different social behaviors in a scalable manner: low-intensity activation promoted social investigation and mounting, while high-intensity activation promoted attack (Lee et al., 2014). These data, together with similar studies of neurons regulating defensive behaviors such as freezing and flight (Kunwar et al., 2015), suggest a novel mechanism in which the progression from low- to high-risk innate behaviors may be controlled by increasing the number and/or spiking rate of active neurons within a specific population, such that different behaviors are evoked at different thresholds. Such a mechanism could provide a way to link graded states of arousal or motivation to behavioral decision-making (Kennedy et al., 2015). Going forward, we will complement these experimental approaches with more formal computational studies of these circuits, based on data from multi-electrode single-unit recordings and calcium imaging in freely behaving animals. In this way, we hope to open up the application of Systems Neuroscience approaches to the study of evolutionarily ancient circuits that control innate survival behaviors.

**PUBLICATIONS**

2019


[https://www.pnas.org/content/pnas/116/15/7503.full.pdf](https://www.pnas.org/content/pnas/116/15/7503.full.pdf)
https://elifesciences.org/articles/46421


2018


2017


Professor of Biology
Alexei Aravin

Visiting Researcher
Daria Esyunina

Lab Manager/Research Assistant
Evita Varela

Postdoctoral Scholars
Maria Ninova, Qing Tang

Graduate Students
Yicheng Luo, Xiawei Huang, Sharan Prakash

Visiting Postdoctoral Scholars
Anton Kuzmenko

Visiting Graduate Students
Elena Fefelova
Baira Godneeva
Meng Xu

VURP Student
Anastasiya Oguienko

Administrative Staff
Rebecca Smith

Lab Website

Financial Support
National Institutes of Health
HHMI Faculty Scholar
Packard Fellowship for Science and Engineering
Small RNAs AND EPIGENETICS

Gene silencing via the RNA interference (RNAi) pathway is an evolutionary conserved process that is critical for the control of gene expression in organisms ranging from yeast to humans. Targets of RNAi are recognized through complementary base-pairing interactions with small RNAs that act as guides to RNAi effector complexes. Several distinct classes of endogenous small RNAs regulate gene expression states to impact diverse biological processes. Our lab focuses on understanding the nature and biological functions of small RNA pathways in animals.

We have identified and characterized an evolutionary conserved small RNA pathway that operates in germ cells and that is critical both for germline stem cell maintenance and for gametogenesis. Working in Drosophila and mice, we discovered a new class of small RNAs, Piwi-interacting (pi)RNAs. Piwi/piRNA pathway plays an important role in genome integrity by repressing selfish repetitive elements. A characterization of piRNA sequences in combination with genetic studies revealed that the biogenesis and function of piRNAs differs from that of other classes of small RNAs. While canonical small RNAs, such as microRNAs, affect gene expression post-transcriptionally, our studies suggest that piRNAs most likely serve as guides for de novo DNA methylation in mouse male germ cells. We are interested in two general questions: biogenesis and function of small non-coding RNAs.

Finding small RNA and DNA species in bacteria

Eukaryotic Argonautes bind small RNAs and use them as guides to find complementary RNA targets and induce gene silencing. Though homologs of eukaryotic Argonautes are present in many bacteria and archaea their small RNA partners and functions were unknown. We found that the Argonaute of Rhodobacter sphaeroides (RsAgo) associates with small RNAs that correspond to the majority of transcripts. RsAgo also binds single-stranded small DNA molecules that are complementary to the small RNAs and enriched in sequences derived from exogenous plasmids as well as genome-encoded foreign nucleic acids such as transposons and phage genes. We showed that expression of RsAgo in the heterologous E. coli system leads to formation of plasmid–derived small RNA and DNA and plasmid degradation. In a R. sphaeroides mutant lacking RsAgo, expression of plasmid-encoded genes is elevated. Our results indicate that RNAi-related processes found in eukaryotes are also conserved in bacteria and target foreign nucleic acids.

Biogenesis of piRNA

Processing of piRNAs differs from that of other known classes of small RNAs. It was shown piRNA are produced independently of Dicer, the nuclease that generates siRNAs and microRNAs from double-stranded substrates; however, the proteins that are responsible for producing piRNAs are only partially understood.

Our investigations of piRNA biogenesis led us to the ping-pong model that proposes amplification of piRNAs in a cycle that depends on the nuclease activity of Piwi proteins themselves. One of the central
mysteries of repeat silencing in both mammals and flies is how repeats are distinguished from genes and selectively silenced. We are investigating the nature of the determinants that make a particular sequence a target of the Piwi pathway. We are using biochemical purification of Piwi-piRNA complexes and genetic approaches to identify proteins involved in piRNA biogenesis.

Functions of the Piwi pathway and piRNA-guided de novo DNA methylation

We showed that the piRNA pathway is linked to de novo DNA methylation in the mouse germline. One of the three murine Piwi proteins is specifically found in germ cell nuclei during the critical window when de novo methylation patterns are established. We also showed that Piwi proteins at that developmental timepoint are associated with piRNAs that target several classes of transposable elements. The same transposons are de-repressed and their genomic sequences lose methylation in Piwi-deficient mice. The discovery that piRNAs may guide DNA methylation in germ cells is an important finding for several reasons. First, it provides a new paradigm for how small RNAs can affect gene expression. Second, it explains how a subset-of-sequences are tagged for de novo methylation. How methylation sites are defined remains a central mystery of epigenetics. An important goal of my lab is to define the pathway by which piRNAs guide de novo DNA methylation. We also study whether the piRNA pathway can be re-programmed to new targets and can be used to manipulate DNA methylation patterns in somatic cells.

It is clear that germ cells, somatic stem cells and probably cancer stem cells possess unique pathways for small RNA-mediated silencing. Our long-term goal is to understand how diverse RNA silencing mechanisms are integrated with other pathways in context of development and pathology. Eventually, the knowledge gained from the investigation of silencing mechanisms in stem and germ cells will help us to understand the unique biology of these cells and will impact our general understanding of gene regulation and how it is altered in disease.

Epigenetic regulation of transposable elements in cancer

Genomes of mammalian species, including humans, are swamped by genomic parasites, transposable elements (TE). About one half of the human genome is occupied by hundreds of thousands of TE copies. It is likely that transposable elements deeply intervene with cellular regulatory networks. It was speculated that on evolutionary timescale TEs are beneficiary for their hosts providing genomic plasticity necessary for natural selection. Analogously, it is possible that TEs help to increase genome and epigenome plasticity of cancer cells and bring them competitive advantage and adaptability. We attempt to comprehensively investigate the role that TEs play in cancer. We study changes in chromatin structure, expression and mobilization of TEs associated with cancer development using several complementary approaches.
PUBLICATIONS

2017

2016


2015


Linus Pauling Professor of Chemical Engineering, Bioengineering, and Biochemistry; Nobel Laureate; Director of the Donna and Benjamin M. Rosen Bioengineering Center
Frances Arnold

Postdoctoral Fellows and Scholars (current)
Soumitra Athavale, Noah Dunham, Benjamin Levin, Zhen Liu, David Miller, Nicholas Porter

Staff Scientists
Sabine Brinkmann-Chen

Graduate Students (current)
Patrick Almhjell, Shilong Gao, Nathaniel Goldberg, Kadina Johnston, Ravi Lal, Nicholas Sarai, Lucas Schaus, Ella Watkins, Bruce Wittmann, Juner Zhang, Daniel Wackelin

Administrative Staff
Cheryl Nakashima

Financial Support
American Chemical Society Green Chemistry Institute
Amgen Chem-Bio-Engineering Award
Camille and Henry Dreyfus Foundation
Carver Mead New Adventure Seed Fund
Dow Chemical Company
National Institutes of Health (NIH)
National Science Foundation (NSF)
U.S. Army Office, Institute for Collaborative Biotechnologies (AROICB)
U.S. Army Research Laboratory (ARL)
U.S. Department of Energy

AWARDS AND HONORS
2020 Foreign Member, UK Royal Society
2020 Honorary Doctorate, Princeton University
2019 Foreign Member, UK Royal Society of Chemistry
2019 Honorary Doctorate, University of Padova
2019 International Women’s Forum Hall of Fame
2019 Portrait of a Nation Prize, Smithsonian Institute National Portrait Gallery
2019 Pontifical Academy of Sciences
2019 Honorary Doctorate, Technical University of Denmark
2019 Bower Award for Advancement in Science, Franklin Institute
2018 Nobel Prize in Chemistry
2018 UK Royal Academy of Engineering
2018 American Philosophical Society
2017 Margaret Rousseau Pioneer Award of the AIChE
2017 Society of Women Engineers Achievement Award
2017 Robert Fletcher Award and Honorary Doctorate, Dartmouth University
2017 National Academy of Sciences Sackler Prize in Convergence Research
2016 Millennium Technology Prize, Technology Academy Finland
2016 Honorary Doctorate, University of Chicago

Images from left to right:
Caption - photo: Professor Frances H. Arnold
Caption - graphic 1: Active center of novel heme enzymes
Caption - graphic 2: First crystal structure of a reactive carbene in the active site of an enzyme

NAMED LECTURES
2020 Marshall Nirenberg Lecture, NIH
2020 MilliporeSigma Lecturer, UC San Diego
2019 Apeloig Lecture, Chemistry, Technion
2019 Francis Crick Lecture, MRC-LMB
2019 Dauber Lecture in Chemistry, U. Washington
2019 Kollman Lecturer, UCSF
2018 Bachmann Lecturer, Chemistry, U. Michigan
2018 Hamilton Lecturer, Chemistry, U. Nebraska
2018 Hill Lecture in Chemistry, Duke U.
2017 Ralph Hirschmann Lectures, Chemistry, U. Wisconsin
2017 George Olah Lecture, Chemistry, U. Southern California
2017 Jacobus Van’t Hoff Lecturer, TU Delft
2017 Barre Lectures, Chemistry, U. Montreal
2017 Reilly Lectures in Chemical Engineering, Notre Dame
2016 Bohmann Lecture in Chemistry, TU Berlin
2016 Sydney Brenner Nobel Lecture, Salk Institute
2016 Vasser Wooley Distinguished Lecturer, Georgia Tech, and Chemistry

SUMMARY OF RESEARCH / RESEARCH STATEMENT
We develop and apply new methods of protein engineering. Our lab pioneered ‘directed evolution’ approaches that are used throughout the world to make everything from medicines to foods, textiles, consumer products, chemicals, and fuels. We are exploring hybrid computational/evolutionary methods in challenging applications. We are especially interested in the evolution of new enzymes (to catalyze reactions with no known biological counterparts) and understanding the mechanisms by which these new functions arise.
PUBLICATIONS

2020


2019


2018


2017


2016


BASIC IMMUNOLOGY AND ENGINEERING OF THE IMMUNE SYSTEM

Our laboratory combines two different styles of work: basic studies in immunology and translational studies that draw on immunology.

The basic science revolves around various aspects of control of immune function. Over 25 years ago we discovered the inducible transcription factor NF-kB, later shown to be a master regulator of inflammatory and immune processes, and we continue to examine its properties. Most recently we have concentrated on two aspects of NF-kB, how it can produce a response that varies over more than 24 hours after its induction and how it is tuned down after induction. The timing issue has turned out to involve control by intrinsic properties of the different genes induced by NF-kB, mainly the half-life of the mRNAs and control over the timing of splicing. The tuning down involves many factors, one being feedback regulation by the NF-kB–induced microRNA miR-146a. We have shown that miR-146a downregulates TRAF-6 and IRAK-1 in macrophages and T cells so that a knockout of this microRNA leads to hyperactivation of the cells by LPS and a slower resolution of T cells responses to antigen. The consequence is hyperproliferation of the two cell types and, after a year, frank myeloid cancer. We are deconvoluting the roles of the two cell types in cancer induction. We have found that miR-146a is needed to maintain the health and longevity of hematopoietic stem cells and are trying to understand just how regulation of NF-kB is involved in this process.

We have also examined other microRNAs that are involved in immune processes like miR-155 and miR-125b. Our present understanding of miR-155 is that its function is to enhance immune induction by positive feedback regulation. It appears that a major function of miR-146a is
through miR-155. MiR-125b overexpression induces aggressive cancer in less than six months involving both myeloid and lymphoid disease. It appears to act through lin28.

In a separate program, we are investigating how lentivectors activate dendritic cells. Surprisingly, this doesn’t involve any of the TLR-driven pathways but rather the STING pathway. The translational studies derive from the development of viral vectors that can mediate changes in immune function, a program we call Engineering Immunity. In one aspect, we are focusing on lentiviral vectors that encode T cell receptor genes able to program patient T cells to react with melanoma cells. Here we collaborate with colleagues at UCLA and have an active clinical program under way. In a second program, which we call Vectored ImmunoProphylaxis or VIP, we are using Adeno-Associated Virus-derived vectors to program muscle cells to make broadly reactive and potent antibodies against HIV and other pathogens. This program, presently carried out using mice that harbor a human immune system, is in the process of clinical evaluation in humans in collaboration with the Vaccine Research Center at NIH.

Another aspect of our translational work is to clone the genes encoding T cell receptors (TCRs) that could be clinically useful. In one program that is collaborative with the Witte laboratory at UCLA, we are searching for TCRs that could be valuable in directing T cells to prostate tumor antigens. In another program we are searching for TCRs that could be valuable for treating HIV-infected patients. These TCRs come from B27+ or B57+ elite controllers.

**PUBLICATIONS**

**2020**

Hirokawa, Soichi; Chure, Griffin et al. (2020) Sequence-Dependent Dynamics of Synthetic and Endogenous RSSs in V(D)J Recombination Nucleic Acids Research; Vol. 48; No. 12;

Su, Yapeng; Ko, Melissa E. et al. (2020) Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line Nature Communications; Vol. 11;

Frankiw, Luke; Mann, Mati et al. (2020) Alternative Splicing Coupled with Transcript Degradation Modulates OAS1g Antiviral Activity RNA; Vol. 26; No. 2;

Su, Yu-Lin; Wang, Xiuli et al. (2020) Myeloid Cell-Targeted miR-146a Mimic Inhibits NF-kB-Driven Inflammation and Leukemia Progression in Vivo Blood; Vol. 135; No. 3;

**2019**

Kortylewski, Marcin; Su, Yu-Lin et al. (2019) Myeloid cell-targeted miR-146a mimic alleviates NF-kB-driven cytokine storm without interfering with CD19-specific CAR T cell activity against B cell lymphoma Journal for ImmunoTherapy of Cancer; Vol. 7; No. S1; In: 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019), 6-10 November 2019, National Harbor, MD

Ng, Alphonsus H. C.; Peng, Songming et al. (2019) MATE-Seq: Microfluidic Antigen-TCR Engagement Sequencing Lab on a Chip; Vol. 19; No. 18;

Su, Yapeng; Li, Guideng et al. (2019) Trajectories from Snapshots: Integrated proteomic and metabolic single-cell assays reveal multiple independent adaptive responses to drug tolerance in a BRAF-mutant melanoma cell line

Peng, Songming; Zaretsky, Jesse M. et al. (2019) Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood Cell Reports; Vol. 28; No. 10;

Su, Yapeng; Lee, Jihoon W. et al. (2019) Kinetic Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma

Jiang, Shuai; Yan, Wei et al. (2019) Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages Proceedings of the National Academy of Sciences of the United States of America; Vol. 116; No. 25;

Paucek, Richard D.; Baltimore, David et al. (2019) Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy Trends in Immunology; Vol. 40; No. 4;

Baltimore D. Sixty Years of Discovery. Annual Review of Immunology. 2019. 37:1-17. PMID: 30379594


2018


Kim JT, Chang E, Sigal A, Baltimore D. Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. Plos One. 2018, Jan 2. 13. PMID 29293546

2017


Wee, Edmund G. and Ondondo, Beatrice and Berglund, Peter and Archer, Jacob and McMichael, Andrew J. and Baltimore, David and ter Meulen, Jan H. and Hanke, Tomáš (2017) HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. *Molecular Therapy,* 25 (2). pp. 494-503. ISSN 1525-0016. PMCID PMC5368423. [Download](https://www.nature.com/articles/mt/2016/66)

Lee, Ha Won and Khan, Samia Q. and Khaliqdina, Shehryar and Altintas, Mehmet M. and Grahammer, Florian and Zhao, Jimmy L. and Koh, Kwihey and Tardi, Nicholas J. and Faridi,

Zhang, Qian and Lenardo, Michael J. and Baltimore, David (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168 (1-2). pp. 37-57. ISSN 0092-8674. PMCID PMC5268070. Download


2016


David Baltimore Professor of Biology and Biological Engineering
Pamela J. Bjorkman

Member of the Professional Staff
Anthony P. West, Jr.

Research Scientists
Harry Gristick, Jennifer Keeffe, Mark Ladinsky

Postdoctoral Scholars
Christopher Barnes, Andrew Flyak

Visiting Associates
Yongning He, Collin Kieffer

Graduate Students
Morgan Abernathy, Alex Cohen, Kim-Marie Dam, Andy DeLaitsch, Shannon Esswein, Magnus Hoffmann, Claudia Jette, Zhi Yang

Undergraduate Student
Sanjana Kulkarni

Research and Laboratory Staff
Han Gao, Priyanthi Gnanapragasam, Pauline Hoffmann, Beth Huey-Tubman, Leesa Kakutani, Nick Koranda, Yu (Erica) Lee, Lynda Llamas, Anais Majewski, Marta Murphy, Semi Rho

Website

Images from left to right:
Professor Pamela Bjorkman
3-D reconstruction derived from electron tomography of the lateral intercellular space between two intestinal epithelial cells. Gold spheres represent antibodies transported by the neonatal Fc receptor.
Crystal structure of a broadly neutralizing antibody bound to an HIV envelope spike protein.
Confocal fluorescent image of polarized cells expressing Fc receptors that transport IgG and dimeric IgA.
Financial Support

Bill and Melinda Gates Foundation
Burroughs Wellcome Fund Postdoctoral Enrichment Program Award (fellowship to Christopher Barnes)
Charlie Trimble
De Logi Trust
HHMI Hanna H. Gray Fellows Program Award (fellowship to Christopher Barnes)
Kairos Ventures
Mercatus Center at George Mason University
Merkin Institute Foundation
National Institutes of Health P01, P50, and R01
NIH Pathway to Independence Award (K99) to Andrew Flyak
NIH F30 Ruth L. Kirschstein Individual Predoctoral NRSA Award to Shannon Esswein
The Pew Charitable Trust, Biomedical Innovation Fund

HONORS AND AWARDS

2020 – World Laureate Foundation speaker
2020 – Citation Laureate, Physiology or Medicine
2019 – Ceppellini Award from European Federation for Immunogenetics
2019 – Keynote speaker at West Coast Structural Biology Workshop
2019 – Physics Colloquium, Los Alamos National Laboratories

STRUCTURAL BIOLOGY OF ANTIBODY RECEPTORS AND IMMUNE RECOGNITION OF VIRUSES

We are interested in structural mechanisms of recognition in the immune system, specifically in the structure, function, and therapeutic uses of antibodies against viruses. We use single particle cryo-electron microscopy, X-ray crystallography, and biophysical techniques to analyze protein-protein interactions in vitro. We also use electron tomography and confocal microscopy to image interactions in cells, examining, for example, HIV-1 infection in tissues of HIV-infected animals. We also are applying our antibody structure expertise to “engineer immunity” against HIV and to classify human neutralizing antibodies against SARS-CoV-2.

In response to the current COVID-19 pandemic, we are using single-particle cryo-EM and X-ray crystallography to determine the structural correlates of SARS-CoV-2 neutralization. We have solved >10 new structures of distinct neutralizing antibodies isolated from COVID-19 convalescent donors in complex with SARS-CoV-2 spike trimer or receptor-binding domain (RBD). These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects, suggesting combinations for clinical use, and providing insight into immune responses against SARS-CoV-2.
Our efforts in the area of HIV therapeutics focus upon improving the binding and neutralization properties of antibodies with the ultimate goal to design and generate antibodies or antibody-like proteins with desired properties; for example, neutralizing antibodies or designed antibodies engineered to bind more tightly to a pathogen and/or to recruit immune effector cells. We have focused our studies on anti-HIV antibodies, in part because HIV is very successful at evading the human immune system, and because conventional vaccine candidates have failed to elicit an effective response.

Indeed, over 30 years after the emergence of HIV-1, there is no effective vaccine, and AIDS remains an important threat to global public health. Following infection by HIV-1, the host immune response is unable to clear the virus due to a variety of factors, including rapid viral mutation and the establishment of latent reservoirs. The only target of neutralizing antibodies is the trimeric envelope (Env) spike complex, but HIV-1 can usually evade anti-spike antibodies due to rapid mutation of its two spike glycoproteins, gp120 and gp41, and structural features that allow the spike to hide conserved epitopes. Because a completely protective vaccine against HIV has not been found, possible prevention/treatment options involving delivery of broadly neutralizing antibodies (bNAbs) identified in a minority of HIV-infected individuals are being considered. bNAbs that target conserved epitopes on the HIV envelope spike can prevent infection in animal models, delay rebound of HIV after cessation of anti-retroviral drugs, and treat an ongoing infection. Enhancing the efficacy of bNAbs; in particular, designing bNAbs that retain potency against escape mutants selected during exposure to bNAbs, would facilitate their use as therapeutics. We have used structure-based design to engineer bNAbs with increased potencies and breadths, demonstrating that bNAbs are not completely optimized as isolated from HIV-infected patients.

PUBLICATIONS

2020


2019


2018


2017


Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. *Cell*, **169**: 597-609. PMCID: PMC5492969. Download


2016


Morgand, Marion and Bouvin-Pley, Mélanie and Plantier, Jean-Christophe and Moreau, Alain and Alessandri, Elodie and Simon, François and Pace, Craig S. and Pancera, Marie and Ho, David D. and Poignard, Pascal and Bjorkman, Pamela J. and Mouquet, Hugo and Nussenzweig, Michel C. and Kwong, Peter D. and Baty, Daniel and Chames, Patrick and Braibant, Martine and Barin, Francis (2016) V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1. *Journal of Acquired Immune Deficiency Syndromes*, **71**: 237-245. ISSN 1525-4135. PMCID: PMC4770367 Download

Ndjamen, Blaise and Joshi, Devashish S. and Fraser, Scott E. and Bjorkman, Pamela J. (2016) Characterization of Antibody Bipolar Bridging Mediated by the Human Cytomegalovirus Fc receptor gp68. *Journal of Virology*, **90**: 3262-3567. ISSN 0022-538X. PMCID PMC4810659. Download

Ding, Shilei and Veillete, Maxime and Coutu, Mathieu and Prévost, Jérémy and Scharf, Louise and Bjorkman, Pamela J. and Ferrari, Guido and Robinson, James E. and Stürzel, Christina and Hahn, Beatrice H. and Sauter, Daniel and Kirchhoff, Frank and Lewis, George K. and Pazgier,


2015


Ndjamen, Blaise and Bjorkman, Pamela (2015) Distinct Intracellular Trafficking Patterns of Host IgG by Herpes Virus Fc-Receptors. *FASEB Journal*, **29**: 574.30. ISSN 0892-6638. [Download](#)


Albert Billings Ruddock Professor of Biology
Marianne Bronner

Visiting Associates
Clare Baker

Postdoctoral Fellows
Wael El-Nachef, Erica Hutchins, Ezgi Kunttas-Tatli, Yuwei Li, Megan Martik, Sierra Marable, Michael Piacentino, D. Ayyappa Raja, Tatiana Solovieva, Ruth Williams

Graduate Student
Riley Galton, Shashank Gandhi, Alison Koontz, Can Li, Lily Tang

Undergraduate Student
Cecilia Andrews

Research and Laboratory Staff
Meyer Barembaum, Ryan Fraser, Constanza Gonzalez, David Mayorga, Joanne Tan-Cabugao

Contributors
Stylianos Andreadis, Robb Krumlauf, Pablo Strobl-Mazzulla, Tatjana Sauka-Spengler, Andrea Streit

Lab Website
http://www.bronnerlab.com/

Financial Support
National Institutes of Health (NIDCR, NICHD, NINDS, NIHLB)

CELLULAR AND MOLECULAR STUDIES OF NEURAL CREST DEVELOPMENT

This laboratory’s research centers on the early formation of the nervous system in vertebrate embryos. The peripheral nervous system forms from two cell types that are unique to vertebrates: neural crest cells and ectodermal placodes. We study the cellular and molecular events underlying the formation, cell lineage decisions and migration of these two cells types. The neural crest is comprised of multipotent stem-cell-like precursor cells that migrate extensively and give rise to an amazingly diverse set of derivatives. In addition to their specific neuronal and glial derivatives, neural crest cells can also
form melanocytes, craniofacial bone and cartilage and smooth muscle. Placodes are discrete regions of thickened epithelium that give rise to portions of the cranial sensory ganglia as well as form the paired sense organs (lens, nose, ears). Placodes and neural crest cells share several properties including the ability to migrate and to undergo an epithelial to mesenchymal transition. Their progeny are also similar: sensory neurons, glia, neuroendocrine cells, and cells that can secrete special extracellular matrices.

Our laboratory focuses on understanding the molecular mechanisms underlying the induction, early development and evolution of the neural crest and placodes. This research addresses fundamental questions concerning cell commitment, migration and differentiation using a combination of techniques ranging from experimental embryology to genomic approaches to novel gene discovery and identification of gene regulatory regions. These studies shed important light on the mechanisms of neural crest and placode formation, migration and differentiation. In addition, the neural crest and placodes are unique to vertebrates. In studying the evolution of these traits, we hope to better understand the origin of vertebrates.

Because these cell types are involved in a variety of birth defects and cancers such as neurofibromatosis, melanoma, neuroblastoma, our results on the normal mechanisms of neural crest development provide important clues regarding the mistakes that may lead to abnormal development or loss of the differentiated state.

PUBLICATIONS

2020


2019


2018


Huang, Miller and Zheng, Tina and Guo, Jeffrey and Sperring, Colin and Miller, Matthew and McHenry, Lauren and Zhen, Qiqi and Moriartry, Branden and Bronner, Marianne and Conklin, Bruce and Largaespada, David and Maris, John and Matthy, Katherine and Weiss, William (2017) Human pluripotent stem cell-based models of neuroblastoma. Neuro Oncology, 19 (S6). p. 256. ISSN 1522-8517. Download


Li, Yuwei and Li, Ang and Junge, Jason and Bronner, Marianne (2017) Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. eLife, 6 . Art. No. e23279. ISSN 2050-084X. PMCID PMC5634781. Download


Murko, Christina and Bronner, Marianne E. (2017) Tissue specific regulation of the chick Sox10E1 enhancer by different Sox family members. Developmental Biology, 422 (1). pp. 47-57. ISSN 0012-1606. PMCID PMC5810587. Download

Kerosuo, Laura and Bronner, Marianne E. (2016) cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool. Cell Reports, 17 (10). pp. 2648-2659. ISSN 2211-1247. PMCID PMC5726515. Download


2017


Murko, Christina and Bronner, Marianne E. (2017) Tissue specific regulation of the chick Sox10E1 enhancer by different Sox family members. Developmental Biology, 422 (1). pp. 47-57. Download
2016


2015


Nie, Shuyi and Bronner, Marianne E. (2015) Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm. Cardiovascular Research, 106 (1). pp. 67-75. ISSN 0008-6363. Download


Our laboratory pioneered the field of spatial genomics. We developed tools such as seqFISH that allows >10,000 genes to be detected in situ with single molecule resolution in tissues. We also developed MEMOIR to record molecular events into the genome of cells in collaboration with Michael Elowitz’s lab. These transformative tools have allowed us to discover unexpected dynamics in stem cell biology, uncover spatial organization in the brain and embryos. We will continue to explore questions in developmental biology and neuroscience, as well as generating spatial atlas of organisms at the single cell resolution. The key to doing science is knowing what’s not known. Spatial genomics gives us a tool to find those unknowns.
PUBLICATIONS

2018


2017


2016

A hallmark of cancer cells, in addition to uncontrolled proliferation, is genomic instability, which appears in the form of chromosome loss or gain, gross chromosomal rearrangements, deletions, or amplifications. The mechanisms that suppress such instability are of the utmost interest in understanding the pathogenesis and treatment of cancer. Our lab studies the components of the DNA replication apparatus that promote genomic stability. We use yeast genetics and biochemistry, *Xenopus* egg extracts, and human cells.

DNA replication is the central process of all actively dividing cells. Blocking this process can result in cell cycle arrest, senescence, and apoptosis. Therefore, DNA replication forks constitute the targets of most cancer chemotherapeutics, including agents that induce DNA lesions, such as camptothecin and cisplatin and ionizing radiation, plus those that stall replication, such as gemcitabine and 5-fluorouracil. If not repaired, this DNA damage may block or collapse DNA replication forks and kill cancer cells. Besides the problem of collateral damage to non-tumor cells, a serious drawback of these therapeutic treatments is that sooner or later the cancer cell may become resistant to the radiation or chemotherapy. Reasons for resistance include increased tolerance for DNA lesions and enhanced capacity for DNA damage response and repair. Therefore, inhibition of proteins that function at the DNA replication/DNA repair interface are attractive targets for sensitizing tumor cells to chemotherapeutic agents. Our intensive studies of DNA2 suggest that it is an Achilles heel for cancer cells, and much of our effort are is aimed at developing small molecule inhibitors to exploit this vulnerability.
At least seven human diseases characterized by cancer predisposition and/or premature aging are correlated with defects in genes encoding DNA helicases. The yeast genome contains 134 open reading frames with helicase motifs, only a few of which have been characterized. Martin Budd in our laboratory identified the first eukaryotic helicase essential for DNA replication, Dna2. He showed by interaction studies that it was a component of the machine that is required for accurate processing of Okazaki fragments during lagging-strand DNA replication. Enzymatic studies to elucidate the sequential action of the DNA polymerases, helicases, and nucleases required for this processing constitute an ongoing mechanistic biochemistry project in the laboratory. Okazaki fragment processing represents the heart of the replication machine, and our studies have revealed that, as in prokaryotes, the replisome is not a machine made up of dedicated parts like its namesake the ribosome. Instead, the replisome is a dynamic structure with proteins constantly exchanging protein and DNA partners to coordinate the rapid and high fidelity synthesis of the anti-parallel leading and lagging strands of the DNA template. Our current work focuses on the regulation, by reversible acetylation and phosphorylation, of the protein/protein and protein/DNA hand-offs that we have defined over the last decade.

One model of cellular aging suggests that accumulation of DNA damage leads to replicative senescence. Most endogenous damage occurs during S phase and leads to replication fork stress. At least three human diseases of premature aging or cancer predisposition - Werner, Bloom, and Rothmund-Thompson - are caused by defects in helicases that interact with Dna2. We found that dna2 mutants have a significantly reduced life span. Microarray analysis showed that the dna2 mutants age by the same pathway as wildtype cells; they just age faster. Interestingly, the human Bloom and Werner genes complement the replication defect of dna2 mutants, suggesting that Dna2 works in the same pathway with these genes. We have now shown that the Dna2 helicase works with the yeast BLM ortholog, Sgs1, in the major pathway of double-strand break repair in yeast and are studying the same process in both yeast and human cells. Together Dna2 and Sgs1 are involved in the initial resection of the 5' terminated strand of the DSB to produce a single-stranded 3' end. This is a crucial step because it is where the cell decides whether to pursue the relatively error-free homologous recombination pathway or the more error-prone non-homologous end-joining repair. The 3’ end generated by Dna2/Sgs1 is involved in strand invasion of the homolog and thus, the initiation of strand exchange. Perhaps even more important the single-stranded DNA is a key intermediate in the activation of the cell cycle checkpoint that protects the cell from genome instability in the presence of a double-strand break arising from replication fork failure. In collaboration with Dunphy lab, we readily showed that Dna2 also participates in resection in Xenopus egg extracts. We have now reconstituted the recombination machine both from purified yeast proteins and from purified human counterparts, including Dna2 and BLM helicase. BLM helicase is defective in one of the most cancer-prone diseases yet described, Bloom syndrome. Cells from these patients show a high frequency of sister chromatid exchanges and quadriradials. The biochemical approach provides a mechanistic basis for this dynamic recombination processing machine. Especially for the human proteins, this provides insights previously unavailable due to the difficulty of performing recombination experiments in human cells.

Telomeres, i.e., the ends of linear chromosomes, are a special case of the type of ends found at DSBs. Not surprisingly, Dna2 also plays a significant role at telomeres. In fact, the bulk of Dna2 is localized to telomeres and in yeast, this localization is dynamic. During G1 and G2 phases of the cell cycle, Dna2 is at telomeres. During S phase Dna2 leaves telomeres and is present on the replicating chromatin. Dna2 is also mobilized from telomeres in response to the induction of intrachromosomal double-strand breaks with agents such as bleomycin. At the end of S phase, telomeres become single-stranded in all
organisms and this occurs through 5' resection to produce single-stranded 3' overhangs. We have now shown that Dna2 is one of the major enzymes involved in resection at telomeres, as well as internal DSBs. It will be important to investigate if the same holds true in human cells with Dna2 knocked down by shRNA.

**Supplementary Figure 1: Model for DNA end resection after replication stress.** Camptothecin or cisplatin exposure blocks replication due to formation of topoisomerase-DNA adducts (red star) or interstand cross links (red link between strands), respectively. Approaching replication forks are unable to proceed past the lesions and may subsequently collapse to generate DSBs. DSBs are first processed by MRN (brown circles)/CtIP (yellow hexagon) to generate short 3’ ssDNA. BLM (blue circles), DNA2 (red pacman) or EXO1 (not shown) are necessary for long range resection to produce ssDNA that is capable of binding RPA (purple oblongs). Long range resection is also needed to effect an ATM to ATR switch. RPA bound to DNA is hyperphosphorylated thus promoting ATR phosphorylation of Chk1, induction of cell cycle checkpoint and efficient DNA damage repair. Long range resection precludes the engagement of the NHEJ pathway by preventing the hyperphosphorylation of DNA-PKcs.

**PUBLICATIONS**

2018

Pichierri, Pietro and Aiello, Francesca Antonella and Palma, Anita and Malacaria, Eva and Zheng, Li and Campbell, Judith L. and Shen, Binghui and Franchitto, Annapaola (2018) RAD51 and mitotic function of MUS81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease. . (Unpublished) Download

Liu, Lu and Zhang, Yue and Zhang, Jingjing and Wang, Jian-Hua and Cao, Qinhong and Li, Zhen and Campbell, Judith L. and Dong, Meng-Qiu and Lou, Huiqiang (2018) Flexibly-oriented double Cdc45-MCM-GINS intermediates during eukaryotic replicative helicase maturation. . (Unpublished) Download

2017


Dmowski, Michał and Rudzka, Justyna and Campbell, Judith L. and Jonczyk, Piotr and Fijałkowska, Iwona J. (2017) Mutations in the Non-Catalytic Subunit Dpb2 of DNA polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint. PLOS Genetics, 13 (1). Art. No. e1006572. ISSN 1553-7404. PMCID PMC5291541. Download <Download>
Research Professor of Biology and Biological Engineering  
Tsui-Fen Chou

Postdoctoral Fellows and Scholars  
Kai-Wen Cheng, Shan Li, Feng Wang, Gang Zhang

Research Associate  
Rod Carlo Columbres

Graduate Student  
George Lopez

Lab Manager  
Nallely Ruiz-Lopez

Lab Website

SUMMARY OF RESEARCH / RESEARCH STATEMENT  
Dr. Chou is interested in understanding the mechanisms of disease causing mutations of p97/VCP ATPase, a key player in cell proteasome and autophagy function, and has used p97 inhibitors as tools to develop pathway-specific inhibitors. Her main research focus is on discovering underlying mechanisms that may lead to new therapeutic targets for cancer and rare disease.
PUBLICATIONS

2020

Chen, Yu-Chuan; Navarrete, Marian S. et al. (2020) *N*-myristoyltransferase-1 is necessary for lysosomal degradation and mTORC1 activation in cancer cells* Scientific Reports; Vol. 10; https://resolver.caltech.edu/CaltechAUTHORS:20200727-084934912

Wang, Feng; Li, Shan et al. (2020) *Allosteric p97 inhibitors can overcome resistance to ATP-competitive p97 inhibitors for potential anti-cancer therapy* ChemMedChem; Vol. 15; No. 8; https://resolver.caltech.edu/CaltechAUTHORS:20200316-130434745

2018

Li, Jing; Zhang, Yaru et al. (2018) *Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11* Cell Chemical Biology; Vol. 25; No. 11; https://resolver.caltech.edu/CaltechAUTHORS:20180823-134532623

2017

Nakasone, Mark A.; Lewis, Timothy A. et al. (2017) *Structural Basis for the Inhibitory Effects of Ubistatins in the Ubiquitin-Proteasome Pathway* Structure; Vol. 25; No. 12; https://resolver.caltech.edu/CaltechAUTHORS:20171128-081216731

Perez, Christian; Li, Jing et al. (2017) *Discovery of an Inhibitor of the Proteasome Subunit Rpn11* Journal of Medicinal Chemistry; Vol. 60; No. 4; https://resolver.caltech.edu/CaltechAUTHORS:20170324-090339100

2015


2014

Kato, Mihoko; Chou, Tsui-Fen et al. (2014) *LINKIN, a new transmembrane protein necessary for cell adhesion* eLife; Vol. 2014; No. 3; https://resolver.caltech.edu/CaltechAUTHORS:20141204-125558317

Sapir, Amir; Tsur, Assaf et al. (2014) *Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging* Proceedings of the National Academy of Sciences of the United States of America; Vol. 111; No. 37; https://resolver.caltech.edu/CaltechAUTHORS:20140904-122954030
Chou, Tsui-Fen; Bulfer, Stacie L. et al. (2014) Specific Inhibition of p97/VCP ATPase and Kinetic Analysis Demonstrate Interaction between D1 and D2 ATPase domains Journal of Molecular Biology; Vol. 426; No. 15; https://resolver.caltech.edu/CaltechAUTHORS:20140609-114312310


2013


Chou, Tsui-Fen; Li, Kelin et al. (2013) Structure–Activity Relationship Study Reveals ML240 and ML241 as Potent and Selective Inhibitors of p97 ATPase ChemMedChem; Vol. 8; No. 2; https://resolver.caltech.edu/CaltechAUTHORS:20130301-075535357

2011

Chou, Tsui-Fen; Deshaies, Raymond J. (2011) Development of p97 AAA ATPase inhibitors Autophagy; Vol. 7; No. 9; https://resolver.caltech.edu/CaltechAUTHORS:20110930-072701050

Chou, Tsui-Fen; Deshaies, Raymond J. (2011) Quantitative Cell-based Protein Degradation Assays to Identify and Classify Drugs That Target the Ubiquitin-Proteasome System Journal of Biological Chemistry; Vol. 286; No. 19; https://resolver.caltech.edu/CaltechAUTHORS:20110606-105141967


2010

Esther M. and Abe M. Zarem Professor of Bioengineering and Aeronautics
Michael Dickinson

Lab Staff
Ainul Huda

Post-Doctoral Researchers
Floris Van Breugel, Bradley Dickerson, Ysabel Giraldo, Irene Kim, Thad Lindsay, Pavan Ramdya, Ivo Ros, Peter Weir

Graduate Students
Alysha de Souza, Johan Melis

Administrative Staff
Lilian Porter

Lab Website

Research Summary

Architecture for sparse control of the flight motor system
Alysha de Souza

Flapping flight confers many benefits, such as ease of rapid aerial maneuvers, but the advantages of this mode of flight are accompanied by corresponding challenges to motor control. Small insects must both generate the high force outputs necessary to stay aloft, and simultaneously maintain the rapid control necessary for agile flight maneuvers. Flies have addressed these diverging demands by developing two highly specialized muscle sub-systems. The first sub-system is a specialized set of asynchronous muscles that generate the power needed for flight. These muscles are activated by stretch, which allows them to decouple neural activation from mechanical output. This tradeoff, allows them to achieve great force outputs at high frequencies without depending on timing information from motor neurons. The second sub-system consists of canonical synchronous muscles, which activate rapidly and directly from neural input. In Drosophila melanogaster, twelve synchronous muscles that attach directly to each wing hinge and are each is innervated by a single motor neuron are responsible for direct flight control. Additionally, since the fly’s high wingstroke frequency (200 Hz) comes close to the duration of a neuron’s refractory period, these motor neurons can only fire once per wingstroke.

Synchronous muscles can be further subdivided into two classes according to their firing pattern: phasic and tonic. Phasic muscles are recruited to execute large rapid maneuvers, and tonic muscles continuously regulate fine-scale changes in wing motion (Fig. 1B). Whereas the motor neurons of phasic muscles are normally silent and recruited in short bursts of activity, neurons of tonic muscles are persistently active. Single-unit recordings from tonic muscles suggest that they achieve control via the timing of their activation within the stroke cycle, which modulates muscle stiffness and changes the
conformation of the wing hinge. Both of these muscle classes require local mechanosensory feedback and multimodal input from the brain to produce flight behavior (Fig. 1A). An informational bottleneck of approximately 400 neurons descending (DNs) from the brain along the neck is responsible for relaying information from the brain to the above-mentioned sub-systems. Whereas previous characterized muscle activity independently, the mechanisms by which synchronous motor neurons are controlled to produce flight remain largely unknown. How do flies regulate fine-scale wing motion of the wings with a remarkably sparse set of actuators?

We used a new set of genetic reagents, to investigate the role of the descending neurons (DNs) to in flight control. We optogenetically targeted small subsets of these DNs for activation, expressing CsChrimson in sparse split-GAL4 labeled DN lines. We then collected this signal during tethered flight while simultaneously recording from asynchronous and synchronous wing muscles, and tracking wing kinematics (Fig. XD,E). We recorded the activity of a tonic muscle, B1, and a phasic muscle, B2, whose activities and associated effects on wing kinematics are well established. Ongoing studies indicate that while DN population coding mediates thrust and power, small changes in the activity of single pairs of DNs may be sufficient to regulate the activity of B1 and B2 (Fig. 1E).

To better understand mechanisms employed by synchronous flight muscles on a population level, we used a genetically encoded calcium sensor to record simultaneously from the nearly complete population of synchronous muscle in *Drosophila* during tethered flight and in response to an array of visual stimuli (Fig. 1F,G). We selected visual stimuli that evoked stereotyped behavioral responses in the form of different kinematic outputs. We then performed pair-wise cross-correlation analyses of the activity of each of the muscle pairs, to assess their functional connectivity relative to kinematic outputs and visual inputs. Across different stimuli and motor outputs we noticed persistent and unique patterns of correlated muscle activity, which we propose define functional motor pools. (Fig. 1H). Our ongoing analysis is aimed at determining whether motor commands encode movement independently or whether they can be represented in a ‘reduced set of signals’: muscle synergies. Muscle synergies, i.e. coherent activations, in space or time, of a group of muscles, may serve as a mechanism of simplifying control of complex motor patterns. We hypothesize that synchronous muscles are recruited in functional motor groups, clustered in part by skeletal attachment sites. To evaluate this hypothesis, we will implement an algorithm produced developed in prior work to extract invariant spatiotemporal components from recordings of the synchronous flight muscles.
Figure 1. Architecture for sparse control of the flight motor system (A). A putative circuit for the flow of visual and mechanosensory information is depicted. Blue denotes the descending control while red denotes mechanosensory feedback from the fly haltere, a gyroscopic sensor and metronome. (B). Wing hinge conformational changes induced by tonic and phasic steering muscles. (C). Anatomy of wing and haltere steering muscles. The steering muscles can be broadly classified by physiology and activity into basalar and axillary groups of tonic and phasic activity. Basalar muscles b1 and b2 and axillary muscles i1 and iii1 play a prominent role in the optomotor control of flight and are of greatest interest to us. (D). Schematic of the experimental setup used to simultaneously electrically record from flight muscle, image calcium activity of population of steering muscles, and track wing motion during optogenetic activation. (E). Optogenetic activation of descending interneurons induces changes in the activity of wing steering muscles, recorded via EMG. 655nm chrimson stimulus elicits activation of phasic B2 muscle and advanced the firing phase of tonic B1 with respect to the wingstroke. The activation of this sparse set of DNs recapitulates the effect we see of kinematics after activation of the halter motor neurons — a recruitment of phasic B2 and a phase advance of tonic B1. (F). Experimental setup used to simultaneously record the bilateral Ca2+ activity of nearly all steering muscles during flight. (G). Sample frame of recording Ca2+ fluorescence, and mapped muscle regions of interest. (H). Pair-wise correlation diagram, depicting the correlated activity of each of the steering muscles across a flight epoch, with the fly flying straight through and expanding starfield. Correlations are noted in blue, while anti-correlated activity is marked with pink. The thickness of the lines indicates the strength of the correlation. Notably, there was a strong contralateral recruitment of b3 and iii3.
Fruit flies must overcome inertia torques to modulate wing pitch
Amir Behbahani

Flying fruit flies must control all six degrees of body motion via subtle changes in wing kinematics. Several studies indicate that changes in wing pitch, which largely determine the angle of attack and center of pressure, are particularly important for controlling body yaw. In addition, prior research suggests that flies might regulate wing pitch via a passive mechanism in which they only adjust the torsional stiffness about the long axis of the wing. During each stroke, the wing rotates under inertial and aerodynamic torque to adopt the required angle of attack. However, this model does not preclude the possibility that flies also actively rotate their wings through the action of the wing hinge and steering muscles. To gain insight into the relative contributions of active and passive mechanisms, we developed a general model of wing rotation.

Using realistic morphometric and kinematic values from the literature, we derived an equation of motion for the pitch axis of the wing. Out of the three equations of motion, based on Kane’s method, we singled out the equation relating the wing pitch angle and the torque that the body applies to the wing about the wing pitch axis (axis E_2 in Fig. 2A). The important terms are the aerodynamic and inertial torques. The inputs to the final equation are the body and wing angles, and the output is the required torque. We solved for the time history of wing pitch and compared it to the actual pattern generated by a fly, using kinematics collected from free flight sequences. We performed a sensitivity analysis on various parameters and found that the solution depends quite strongly on the location of the center of pressure, the mass distribution of the wing, and the level of smoothing applied to the positional data. For data from a free flight, in which the mid-stroke angle of attack is relatively constant at ~45°, we found that the center of pressure is quite close to the axis of rotation and the aerodynamic torque is smaller than inertial torque. Based on the relationship between the required torque and the wing pitch angle, our results suggest that flies must exert some active control over wing pitch to achieve their remarkable aerial agility. The wing angles are not simple sinusoidal signals (Fig. 2B). The complexity leads to complicated shapes for the aero dynamical forces and ultimately required torque from the fruit fly body to the wing (Figs. 2C, and 2D). Based on the shape of the required torque with respect to the wing pitch angle, it seems unlikely that the torque could be modeled with passive elements. For the case that the torque is modeled with passive elements such as a torsional spring and a damper, the shape of the torque with respect to the wing pitch angle is very close to elliptical, which is not the case for the torque calculated based on free flight kinematics (Fig. 2D). Particularly, it seems impossible to capture subtle changes in wing pitch angle (Fig. 2B) or the center of pressure using passive elements.
Figure 2. Inertial wing pitch torques dominate aerodynamic torques in a turning fruit fly. (A) The fruit fly wing coordinate system, rotating about the wing hinge (W). $E_2$ is the span and $E_3$ is the chord direction. The normal direction to the wing, in $E_3$, points out of the page. (B) The wing angles with respect to time associated with yaw motion in a free flight example. The stroke is roughly a sinusoidal signal, and the wing pitch angle follows a general sinusoidal pattern with some higher order components. There is a phase difference between the wing angles. One wing stroke is shaded, with a darker down stroke. (C) The aerodynamic forces normal to the wing, in $E_3$, and along the chord direction, in $E_3$. The aerodynamic force components are based on a decomposition of lift and drag based on the wing velocity components. (D) The aerodynamic, inertial, and required torques as a function of the wing pitch angle. To model the torque as a passive torsional spring with a damper, the required torque would have been much more elliptical. However, based on the current shape of the torque, it seems necessary to include some active components in the model.
The halteres of *Drosophila* act as tunable metronomes during flight
Brad Dickerson

Animals must rapidly collect and process sensory information to execute both reflexive and voluntary sensorimotor tasks. In the case of small flying insects this issue is particularly challenging due to the rapid time scales required during maneuvers. Flies are unique among flying insects in that they possess halteres, which provide timing information that structures the firing of wing steering muscle motor neurons as well as detect mechanical body rotations via the Coriolis force. These structures are evolved from the wings, and as a result have their own set of small muscles that control their motion (Fig. 3A). Furthermore, the base of the haltere is equipped with numerous strain-sensitive campaniform sensilla (Fig. 3B), which send extensive projections into the thoracic ganglion. Given the crucial role of the haltere in mediating reflexes associated with external perturbations along with its evolutionary history, the intriguing possibility exists that these miniscule structures may mediate voluntary flight maneuvers. For example, descending motor commands to the haltere muscles could alter its kinematics in a manner similar to that during whole-body rotations, and thus the pattern and location of strain experienced by the haltere base. The embedded campaniform sensilla would then detect these strains, and through their connections to the wing and neck muscles, alter the fly’s flight path. However, the basis for this hypothesis is physiology in quiescent, non-flying animals, and as a result, the potential role of this cross-modal reflex in flight is not known.

To investigate whether the haltere motor system can co-opt haltere-mediated wing reflexes, we optogenetically activated haltere steering muscle motor neurons (Fig. 3C, D) and simultaneously recorded wing motion and wing steering muscle electrical activity in the fruit fly, *Drosophila melanogaster*. We found that activating the haltere steering muscles modulate the activity of the wing steering muscles in two different ways. First, for the muscle B1, which is tonically active during flight (i.e., firing once per wing stroke), optogenetically stimulating the haltere muscles resulted in the muscle firing earlier in the stroke cycle (Fig. 3E). Second, for the muscle B2, which is phasically active (firing in short bursts at a particular phase of the stroke cycle), we found that activating the haltere muscles led to its recruitment (Fig. 3F). In addition, we found that stimulation of the haltere muscles resulted in increased wingbeat amplitude and frequency (Fig. 3G). Taken together, we obtained the first direct evidence that changes in haltere steering muscle activity may co-opt mechanosensory reflexes, thereby enabling flies to execute voluntary maneuvers (Fig. 3H). Furthermore, these results demonstrate that one sensory modality can directly regulate the activity of another, providing insight into how flies achieve their remarkable aerial stability.
Figure 3. Halteres regulate the activity of the flight steering system. (A) The halteres of *Drosophila* possess one indirect asynchronous power muscle (DVM) and six direct synchronous steering muscles that can be divided into two groups: the basales (B1 and B2) and the axillaries (I1, I2, III1, and III2). A muscle controlling the posterior spiracle (spir) is also seen. (B) Maximum projection of the haltere expressing GFP, showing the locations of campaniform sensilla. (C) Maximum projection of the haltere steering muscle motor neurons driven by the spilt-GAL4 line 93E02-AD; 22A12-DBD. (D) Schematic of setup used to optogenetically activate haltere muscle motor neurons and record wing motion and wing steering muscle activity. (E) Location of wing steering muscle b1 (top), optically recorded wing motion (middle), and muscle action potentials of B1 (bottom) during regular flight (black) and optogenetic activation of the haltere steering muscle motor neurons (red). (F) Same as E, but for wing steering muscle B2. (G) Wingbeat amplitude (top) and frequency (bottom) changes during optogenetic activation. (H) Summary model of how sensory information from the visual system may indirectly control wing motion via the haltere motor system and *vice versa*.

Navigation using celestial and ventral optic flow cues in *Drosophila*  
Francesca V. Ponce

Insects can navigate over long distances, in some cases, thousands of kilometers, by orienting to sensory cues such as visual landmarks, skylight polarization, and celestial objects. Many insects, such as migrating monarch butterflies, orient using the sun as a reference to travel long distances in a particular direction. Whereas fruit flies do not perform such navigation behaviors, previous mark-and-recapture experiments in Death Valley showed that *Drosophila* are able to fly several kilometers at a time. The fly’s energetic limits suggest that they likely held a relatively straight heading during flight, relying on celestial cues, as other landmarks are absent in this setting. A recent study showed that *Drosophila* can follow a straight course and maintain a heading relative to a fixed landmark, a strategy known as menotaxis. In experiments using a flight arena and a simulated sun, flies adopted arbitrary headings and maintained that heading.
preference over successive flights. This would allow a fly to maintain a straight heading over a few hours during a dispersal event.

In addition to maintaining a heading during a long flight, flies also need to regulate flight speed. To control various aspects of flight, insects rely on optic flow, which is the pattern of apparent image motion generated across the retina as an animal moves through its environment. Insects can use optic flow cues to estimate self-motion and navigate through unfamiliar environments, and it is an important source of feedback during flight. For instance, flies use optic flow generated by their own locomotion to stabilize their heading against perturbations, such as gusts of wind that might otherwise take them off course. Also, studies in bees, have shown that they can regulate their ground speed using ventral optic flow (VOF) cues, enabling them to fly in varying wind conditions. The movement of a flying animal results from the combined effects of the moving air and the animal’s own locomotion. Animals that engage in goal-oriented flying presumably have ways of identifying and coping with flows. Despite their small brains, flies successfully utilize sensory information such as vision (optic flow cues) and air speed sensing, to perform a range of complex tasks while flying, such as obstacle avoidance, regulation of flight speed, regulation of flight altitude, and visual control of landings. During a dispersal event, where a fly is holding a constant heading, crosswinds can cause the insect to drift off the straight-line path defined by its preferred heading. It is not yet known if flies drift, or adjust their heading to compensate for crosswinds and maintain their track and how flies cope with the varying optic flow cues resulting from the drift.

To address this question, we built a magnotether arena (Figure 4A), where a fly is tethered to a steel pin placed within a magnetic field, allowing the fly to rotate freely about its yaw axis. Directly underneath the fly, we placed an array of LEDs on which we present patterns that simulate the VOF experienced by a fly as it moves over a terrain. To simulate the “sun”, we mounted LEDs around the fly. We monitored the orientation of the fly, with a camera placed underneath the fly. Initially, we tested the two stimuli (sun and VOF) separately. First, we tested if the flies perform menotaxis using the “sun” in the magnotether arena by letting flies fly in the dark, and then presenting them with the “sun” (Figure 4B). As previously reported, flies maintained an arbitrary heading with respect to the “sun”. Then, we tested the response of the flies to a translational VOF starfield pattern moving in different directions (Figure 4C). This stimulus is designed to simulate the VOF pattern experienced by the fly while flying crosswind. Flies aligned with the direction of the moving pattern, comparable to the classical optomotor response where a fly uses visual motion to correct involuntary deviations from course. We then tested the fly’s response to four presentations of translational VOF first without, and then with the “sun” present. The VOF presentations when the “sun” was present were done after an initial “sun” presentation where the VOF was static. This period was used to establish the fly’s initial preferred heading (Figure 4D). When the sun is absent, flies oriented towards the direction of the moving flow (set at zero in the polar plot), when the sun was present, flies adopted arbitrary headings during the VOF presentations. Currently, we are performing additional experiments and analyses to establish if flies are maintaining their initial preferred heading during the VOF presentations. We also plan to test different speeds of translational VOF.
Figure 4. Navigation using celestial and ventral optic flow cues in *D. melanogaster* 

(A) Close-up of the magnetether arena showing the position of the fly and the LED array underneath it. 

(B) Top panel: Example trace of a fly’s orientation while in the dark and when the “sun” is present. Bottom panel: Polar plots of headings and vector strengths for flies (n=12) in the dark and when the “sun” is present. Heading is indicated by position and the length of vector indicates the degree to which the fly maintains a steady heading. 

(C) Traces of flies’ angle of orientation with respect to a translational VOF. The line and the arrow in the box next to each plot indicates the direction of motion of the VOF. 

(D) Polar plots of headings and vector strengths (n=17) for the response to four presentations of translational VOF without and with the “sun” present. The direction of motion of the VOF is set at 0.
Population of descending interneurons that may serve as both a steering wheel and throttle
Ivo Ros

In flies, and most insects, many types of sensory stimuli are first processed by the central brain, and then relayed to motor circuits in located in the thorax. Isolated motor circuits can endogenously generate motor patterns, but resulting movements are generally less organized and coordinated. The brain sends neural signals to the thorax via descending neurons (DNs). DNs are interneurons with predominantly inputs in the brain and outputs in the ventral nerve cord (Fig. 5 B). DNs may initiate, maintain, or terminate behaviors through direct action or neuromodulation. The function and information content of most DNs are not yet known. Identifying these functions is a major component in understanding design principles in control of behavior.

In Drosophila there are ~400 DNs that govern aspect of flight or walking behaviors. Building on an anatomical characterization of approximately 350 DNs, we used 2-photon microscopy to image activity of DNs that connect the posterior slope, an area in the brain that integrates multimodal sensory information, to the dorsal, flight neuropils in the thorax (Figure 5 A-C). We used the split-Gal4-UAS transcriptional activator system to drive expression of GCaMP6f in these neurons. GCaMP6f fluorescence indicates intra-cellular calcium concentrations that are associated with neuronal activity (Figure 5 C, D).

Optogenetic activation of a particular set of DNs, DNg02, has previously been shown to result in increases in wingstroke amplitude (WA), proportional to the number of cells, suggesting a ‘throttle’ function. To confirm, we imaged bilateral activity of a subset of these anatomically similar pairs of population DNs (Fig. 5 B, C). We found that activity of DNg02 population descending neurons correlated with contralateral wingstroke angles in tethered, flying Drosophila (Fig. 5 D-F). This correlation between neural activity, measured as GCaMP6f fluorescence (ΔF/F), and the contralateral WA was present during presentations of visual stimuli representing self-rotations and changes in flight speed (Fig. 5 E). Only the amplitude of the contralateral wing was predicted by ΔF/F recorded in either the left or right anatomical dendrites; WA on the ipsilateral wing did not correlate with DNg02 activity (Fig. 5 F). Thus, rather than a mere throttle, these population DNs may serve to control wing angles independently, allowing for both steering and throttle functionality.

In addition to these findings, we plan to combine CsChrimson with the volumetric specificity provided by the 2-photon microscope to optogenetically activate DNg02 neurons unilaterally during flight. Restricting optogenetic activation to one side of the brain will allow us to test whether DNg02 activity directly causes increases in the stroke amplitude of the contralateral wing. Similarly, optogenetic silencing using GtACR, can elucidate whether DNg02 neurons are necessary to steer, and if so, if these cells are necessary for just certain types of aerial turns. The addition of functional imaging and manipulation to expansive and detailed anatomical characterization of DNs provides direct insight into the flow of sensor derived information that shapes behavior.
Figure 5. Activity of DNg02 population descending neurons is associated with contralateral wingstroke angle in tethered, flying Drosophila. (A) Schematic of two-photon calcium imaging with presentations of visual stimuli (not to scale). Inset: Wingstroke amplitude (WA) measured from the medio-lateral axis for the left and right wing, (green and red arrows, respectively). (B) Reconstruction image of DNg02, DNs that connect regions in the posterior ventral part of the brain with the dorsal flight neuropil in the ventral nerve cord (from Namiki et al., 2017). (C) MultiColor FlpOut stochastically labeled G-2 population DNs in the brain (Adapted from Namiki et al., 2017). Orange and green box insets: Standard deviation across a two-photon imaging time series, used to identify left and right regions of interest, L roi and R roi. (D) Representative traces of GCaMP6f fluorescence ($\Delta F/F$) and WA recorded during flight with open-loop presentations of rotating and translating star-field visual stimuli (shaded regions) alternated with static star-fields (white regions). Right (light green trace) and left (orange trace) DNg02 $\Delta F/F$ were recorded simultaneously (light green and orange traces), along with left and right WA (dark green and red traces). (E) Top: baseline-subtracted mean right and left $\Delta F/F$ (light green and orange traces) and boot-strapped 95% CI for the mean of fly means (color-shaded areas) in response to star-field patterns rotating in yaw (left two panels) and translating backwards and forwards (progressive and regressive; right two panels). Grey, shaded regions indicate timing of open loop visual pattern movement, as in D. Bottom: same as top panels, but instead of $\Delta F/F$, left and right WA in dark green and red. N = 8. (F) Left: WA varies with $\Delta F/F$ in contralateral DNg02 dendrites for two-minute continuous flight recordings in 8 flies. Sample version Z scores of WA regressed against similarly normalized contralateral $\Delta F/F$. Bootstrapped mean and 95% CI for the mean of fly mean WA for bins of 0.1 $\Delta F/F$ (green trace and shaded area). Bottom: Same as top, but WA does not vary with $\Delta F/F$ in ipsilateral DNg02 dendrites.
Deciphering the aerodynamic functionality of the steering muscles of *Drosophila*.

Johan Melis

When looking at a fruit fly hovering around your kitchen it is hard to imagine that this animal is controlling a complex physical system at a frequency of 200 Hz. To stay aloft, a fly must carefully tune its pattern of wing motion. To rapidly maneuver, a fly must modify subtly these motion patterns generates. Despite the stringent requirements on wing kinematics, each wing is actuated by just twelve steering muscles and each muscle is only innervated by one motor neuron. The question which arises is how the fly can realize the required spatial and temporal control of the wings with this sparse set of actuators?

To answer this question, we build a set-up which can image the activity of the steering muscles and the resulting wing kinematics simultaneously, Fig. 6A. The set-up consists of five cameras: three high-speed cameras film the motion of the wings from three orthogonal angles, a machine-vision camera is focused via a microscope on the thorax of the fly where the steering muscles are located and another machine-vision camera tracks the shadows cast by the wing in real time. The activity of the steering muscles is visualized by means of a fluorescent calcium-indicator (GCaMP) which is genetically expressed in the muscles using the Gal4-UAS system. The calcium-indicator is energized by blue light which is focused on the thorax via a microscope. The steering muscles are situated close to the cuticle and the level of fluorescence in the muscles is sufficiently strong to enable imaging through the cuticle, Fig. 6B. A machine-vision camera captures the fluorescence images at 40 fps and a deconvolution algorithm extracts the activity of the twelve steering muscles in real time from the images.

We are interested in the activation of the steering muscles under flight conditions and in order to perform realistic flight behavior the fly will need visual feedback. This is achieved by creating a virtual environment on a wall of LED panels surrounding the fly. A machine vision camera above the fly captures the shadows cast by the wings at 30 fps. The shadows give an estimate of the left and right wing stroke amplitude and the difference between the two amplitudes is used to set the azimuthal position of a star-field pattern displayed on the LED wall. When an asymmetry between the left and right wing amplitudes occurs, the star-field pattern will rotate and the fly’s reflex is to adjust its wing kinematics to neutralize the optic flow created by the rotating pattern. The change in wing kinematics will restore the symmetry between the left and right wing stroke amplitude.

The three high-speed cameras are filming at 15000 fps and the orthogonal views enable an automated wing tracking program to reconstruct the 3D orientation of the wings for each frame. The orientation of the wings can be parameterized by three Euler angles: the stroke angle, the deviation angle and the wing pitch angle, Fig. 6C. The high-speed cameras are filming continuously but have the capacity of saving only eight seconds of data in the memory buffer. Downloading these eight seconds of high-speed video takes an hour and therefore it is important to make sure that high-speed video is only saved to buffer when interesting muscle activity is occurring. Using the real-time muscle activity signals coming from the fluorescence imaging camera, we can trigger the saving of high-speed video when the activity level of the muscles exceeds a predefined threshold. This triggering method typically yields eight high-speed videos of one second per fly. An example of the simultaneous recording of the wing kinematic angles and the activity of the twelve steering muscles on the left side of the fly is given in Fig. 6D.

The next step in deciphering the aerodynamic functionality of the steering muscles is to correlate changes in wing motion to muscle activity. What makes this correlation analysis difficult is the fact that the temporal resolution of the fluorescence signal is much lower (10 Hz) than the wingbeat frequency (200 Hz). This can be seen in Fig. 6D, where the wing motion changes before changes in muscle fluorescence start to occur. The relatively slow fluorescence signal results in the summation of muscle activity over multiple wingbeats, which means that it becomes harder to discern which muscles are active...
during a wingbeat. We are currently studying the muscle fluorescence kernels by imaging a steering muscle while simultaneously recording the electric activity of the muscle. The muscle fluorescence kernels can be used to improve the temporal resolution of the muscle activity recordings by deconvolution of the fluorescence signal against the kernel. With the improved resolution of the muscle recordings and existing knowledge about the wing kinematics during free flight maneuvers we hope to reveal how a fly can control the complicated aerodynamics of flapping flight with a sparse set of actuators.

Figure 6. Simultaneous recording of wing motion and steering muscle activity on the left side of a tethered fruit fly. (A) The experimental set-up consists of three high-speed cameras recording at 15000 fps in three orthogonal views (camera 1-3), a muscle imaging camera (camera 4) which is focused on the left side of the thorax through a microscope and a flight-behavior camera recording the left and right wing stroke amplitude (camera 5) from the top. The activity of the steering muscles is visualized by means of a genetically encoded calcium indicator expressed in the muscles which increases in fluorescence with rising levels of calcium in the muscle. The fluorescence is enabled by a blue LED which beam is focused through the microscope on the thorax of the fly. LED panels surrounding the fly provide a virtual environment which the fly can control by the difference in left and right wing stroke amplitude. (B) False-color image of the steering muscles and their location within the thorax. The steering muscles can be divided into four groups (b, i, iii, hg), named after the hardened skeletal element (sclerite) within the wing joint on which the muscles are acting. (C) Visualization of the three Euler angles describing the orientation of the wing. The three angles are the stroke angle ($\phi$), the deviation angle ($\theta$) and the wing pitch angle ($\gamma$). (D) Example of the simultaneous recording of wing kinematic angles and muscle activity. The three wing kinematic angles of the left wing are plotted above the z-scores of muscle fluorescence of the twelve steering muscles on the left side of the fly. The names of the muscles are given on the vertical axes and are colored according to the false-color scheme in B. The z-score is calculated by subtracting the average muscle fluorescence during 30 seconds of recording from the instantaneous muscle fluorescence and dividing the resultant by the standard deviation. In the wing kinematic traces, four wingbeats corresponding to low muscle activity are marked in black and four wingbeats corresponding to strong muscle activity are colored red.
Neurogenetic dissection of *Drosophila* flight behavior
Matthew Clark

Our central nervous system has billions of neurons with orders of magnitude more synaptic connections. To better understand how neural circuits generate complex behaviors we use sophisticated neurogenetic techniques available in the model organism *Drosophila melanogaster* to dissect various aspects of behavior. By better understanding neural circuitry in flies, we aim to better understand important evolutionarily conserved neural circuit motifs and aspire to inform bio-inspired engineering of flight control systems for small flying robots. Using the GAL4/UAS system we express the optogenetic effector CsChrimson to manipulate components of the motor system. To this end we utilized split-GAL4 drivers for selected for their expression in ventral nerve cord interneurons (VNC INs) and putative targeting of the flight neuropil. To study the relationship between neural circuitry and the generation of flight behavior, we focused our efforts on the effect of VNC IN activation on wing dynamics, where small wing beat changes lead to dramatic changes in flight heading.

The Dickinson lab has developed sophisticated instrumentation that can measure fine perturbations in kinematic parameters during flight behavior. One such instrument is the flight simulator behavioral arena, or flight arena (Figure 7A). It is a programmable LED display system that records changes in wing kinematics of a tethered fly given a set of visual stimuli. Optogenetic stimulation of neurons during tethered flight allows us to record the resultant changes in stroke amplitude (ΔWBA) and wingbeat frequency (ΔWBF) (Figure 7B, C). The technique was used to record ΔWBA and ΔWBF of optogenetic stimulation of VNC IN split-GAL4 drivers posited to target the flight neuropil to determine the effect on flight behavior. Results showed that targeted VNC IN perturbation had a variety of effects on amplitude and frequency compared to controls, suggesting that dedicated interneuron groups govern specific wing motions (Figure 7D, E). This analysis pipeline will be used to study additional ~30 highly specific VNC IN split-GAL4 driver lines in the near future.

To further study the lines that had significant changes in ΔWBA or ΔWBF, we are interested in using different neurogenetic mapping techniques to understand how the INs map to other components of the motor system. Future goals include using neurogenetic mapping techniques to determine neurotransmitter type and whether the VNC INs are directly premotor INs. Similarly, we can record from flight muscle groups directly during optogenetic stimulation to functionally validate downstream muscle groups that may be driving ΔWBA and ΔWBF.
Figure 7. Neurogenetic dissection of interneurons important for flight. (A) Diagram depicting parts of flight arena setup allowing optogenetic activation of interneurons and tracking systems to monitor changes in wing beat amplitude and frequency. (B) Example of raw traces showing optogenetic stimulation regime of OK371 (pan-motor neuronal) driving UAS-CsChrimson. Traces show 3 stimulation trials with corresponding decrease in left and right wing beat amplitude (ΔWBA) and wing beat frequency (ΔWBF). C. Average of trials and individuals averaged over all 20 stimulation iterations. Faint lines show the average of all trials for individual flies, whereas bold lines show the average of all flies tested for a given genotype (n = 10). (D) Comparison of ΔWBA across experimental genotypes. Estimation plot (bottom) showing confidence interval (bold horizontal black line) used to determine if the experimental genotype differed from the negative control group population. (E) Comparison of ΔWBF across experimental genotypes. Estimation plot (bottom) showing confidence interval (bold horizontal black line) used to determine if the experimental genotype differed from the negative control group population.
Diverse food-sensing neurons in *Drosophila* trigger a local search employing path integration

Román Corfas

After encountering a drop of food, hungry flies often perform a local search consisting of frequent departures and returns to the food site. Fruit flies, *Drosophila melanogaster*, can perform this food-centered search behavior in the absence of external stimuli or landmarks, instead relying solely on internal cues to keep track of their location. This path integration behavior may represent a deeply conserved navigational capacity in insects, but the neural pathways underlying food-triggered searches remain unknown. To discover sensory pathways triggering local search, we tracked the behavior of individual, food-deprived female flies as they explored a circular arena featuring an invisible optogenetic “activation zone” at its center (Figure 8A). The assay consists of an initial 10 minute baseline period, followed by a closed-loop stimulus regime wherein animals receive a 1 second pulse of red light whenever they enter the activation zone. For flies expressing the light-sensitive channel *CsChrimson* in food-sensing neurons, the activation zone should act as a patch of fictive food, potentially able to elicit a local search. Aside from the light pulses used for optogenetic activation, the animals are in complete darkness and must rely on internal cues to navigate the open-field portion of the arena.

Using this assay, we screened candidate cell classes and found that local searches can be initiated by diverse sensory neurons including sugar-sensors, water-sensors, olfactory-receptor neurons, as well as hunger-signaling neurons of the central nervous system. For example, activation of fructose-sensors via *Gr43a-GAL4* resulted in sustained local searches remarkably similar to those previously observed in response to actual food (Figure 8B). Searches exhibit hallmarks of path integration: they are tightly centered around the fictive food, while covering ~30-300cm and featuring frequent revisits to the activation zone (Figure 8C-I). Nearly identical local searches were triggered by activation of sugar-sensing neurons using the *Gr5a-GAL4* driver (Figure 8C-I). The extent of local searches increases with the duration of starvation (data not shown)—an effect seen in searches triggered by real food. In flies subjected to protein deprivation, robust local searches can be triggered by olfactory neurons that sense the attractive odor of apple-cider vinegar (*Or42b-GAL4*), or by hunger-signaling neurons of the central nervous system (*NPF-GAL4*) that are known to mediate the rewarding component of food odors. Even activation of water-sensing neurons (*ppk28-GAL4*) elicited robust local searches in animals subjected to a desiccating environment without food or water.

The use of fictive food in these experiments provides further evidence that flies are in fact using idiothetic path integration during local search, rather than relying on allothetic cues such as humidity (e.g. from a drop of sucrose) or tracks of food residue deposited during search excursions. Consistent with the role of path integration in this behavior, we found that flies are able to sustain centered searches during long periods without re-encountering the fictive food, and that flies re-center their searches when they encounter a new fictive-food site (data not shown). Furthermore, using a grid-shaped arena we show that flies can even perform elaborate local searches within a constrained maze (Fig. 8J). Collectively, these results suggest that flies are using idiothetic path integration to keep track of their position relative to the activation zone. That local search can be elicited by diverse food-associated neurons implies that this behavior is a generalized foraging response, and that these neural pathways may converge onto a common set of brain structures supporting path integration. In particular, studies point to the importance of the central complex—a sensorimotor hub of the insect brain that processes numerous aspects of locomotion, navigation and decision-making. We demonstrate that long-lasting local search bouts can be repeatedly initiated by the brief activation of a small set of neurons, offering a promising entry-point to tracing the neural pathways underlying path integration in insects.
Figure 8. Optogenetic activation of food-sensing neurons triggers local search. (A) Schematic of experimental arena featuring an optogenetic activation zone. (B) Left: example trajectory of a fly before (blue) and after (red) stimulation of sugar-sensing neurons at the activation zone. Right: the same data, plotted as fly distance to activation zone center. The activation zone becomes operational after an initial 10-minute baseline period. (C-G) For flies of the indicated condition and genotype: (C) trajectory of the longest distance search bout, (D) residence probability during search bouts, (E) probability distribution of fly distance to the activation zone during activation search bouts (with light pulse) or baseline search bouts (sham), (F) Centers of mass for all activation search bouts (red dots). Grey rings show the distance from the activation zone of the median center of mass, (G) Raster plots of activation zone residence during baseline (blue) and while the activation zone is operational (red). (H) Mean number of revisits to the activation zone (plotted on a log axis) during baseline (blue) or activation search bouts (red). (I) Mean distance walked (plotted on a log axis) during baseline (blue) or activation search bouts (red). (J) Schematic of grid-shaped experimental arena featuring an optogenetic activation zone (left) and example trajectories of the longest distance search bouts (right). Flies are restricted to the narrow passages between the blocks of the grid (black).
Central complex neurons are necessary for sun navigation in *Drosophila*

Ysabel Giraldo

Insect navigational abilities have long been recognized – from the continent-spanning journeys of monarch butterflies to waggle dancing honey bees communicating food location to their hivemates. Although *Drosophila* might not appear at first glance to be likely candidates for investigating animal navigation, mark-release-recapture studies near Death Valley reveal that fruit flies can fly almost 15 km in a single night, and likely make the journey in only a few hours. To accomplish this feat, the flies would have needed to maintain a straight course, likely using celestial cues to do so. Like many other insects, *Drosophila* can use the pattern of polarized light to fly straight, but it was unknown whether they could use the sun in this navigational task.

Using a flight simulator (Fig. 9A), we presented flies with a small, bright spot, our simulated sun, or a dark stripe on a dark background. When presented with the sun stimulus, flies adopted arbitrary headings with respect to the sun (i.e. menotaxis) but maintained the stripe in front (Fig. 9B). In the dark, all trials had very low vector strengths (as shown in polar plots as short radial distances for each line), indicating that the flies’ responses to sun and stripe were based on the stimuli presented and not an artifact of the arena (Fig 9B). To examine whether individuals exhibited directional biases irrespective of stimulus type, we compared headings for stripe and sun presentations within individuals and found no correlation suggesting that heading preferences were stimulus dependent.

Given that individuals perform menotaxis using a simulated sun, we asked whether flies have a fixed preferred heading or adopt a new direction randomly each flight. We presented the sun stimulus with a variable time interval in between (5 minutes, 1 hour, 2 hours, or 6 hours) and compared first and second flight headings of these two flights. We found that flies remember their headings over the course of several hours (Fig. 9C). Next, we asked whether flies adjust their headings to account for the sun’s movement across the sky using a time-compensated sun compass. To do so, we compared a fixed-memory (FM) model with one in which flies shifted their heading to account for a 15° per hour shift in the sun’s azimuth (TC model) (Fig. 9C). For short time intervals, there was no discernible difference between the two models, but at 2 or 6 hours, the FM model better explained our data than the TC model. Given that flies can fly continuously for approximately 2 hours without stopping, a time-compensated sun compass might be unnecessary for navigating *Drosophila*.

To begin to identify the neural basis of this behavior, we silenced a class of neurons (E-PG cells, Fig. 9G) in the central complex that have recently been shown to act as compass cells in *Drosophila*. We drove the inwardly rectifying potassium channel Kir2.1 in three split-Gal4 lines and an empty-vector control and measured sun and stripe responses in a flight simulator. Without functioning E-PGs, flies no longer performed menotaxis, instead fixing the sun in front, but stripe fixation was unaffected (Fig. 9D, E). These results suggest that when flies no longer have accurate compass information they revert to the simpler reflexive behavior of phototaxis which does not require the complex circuitry of the central complex.
Figure 9. Sun navigation requires compass neurons. A) Flight arena. The fly controls the azimuthal angular velocity of a small, bright spot – a simulated sun – with changes in wing stroke amplitude. B) Mean headings for a population of flies are shown on polar plots. Each fly is represented by a line with angle indicating mean heading and length representing vector strength. Vector strength is a measure of heading fidelity, with a value of 1 for a fly that precisely maintained its heading for the duration of the trial. Population mean and 95% confidence interval are shown in red. Population responses to a simulated sun, a stripe, and in the dark. C) Flies maintain their heading for hours. Heading correlation is plotted for experiments in which flies were presented with a sun stimulus, flight was stopped for a variable period of time, and then presented with the sun stimulus again. Mean heading for the second sun flight is plotted against mean heading for the first sun flight with gray bars indicating variance multiplied by an arbitrary scaling factor of 36 for visibility. Black line shows heading with a fixed-memory (FM) model in which flies precisely maintain their headings. Blue line shows were points would lie if flies performed time compensation (TC model), assuming a 15° hr⁻¹ shift in sun position. D) Control flies lacking GAL4 protein do not produce Kir2.1. Flies perform menotaxis when presented with a sun stimulus but fix a stripe
E) E-PG neurons were silenced in UAS-Kir; SS00096-GAL4 flies, which performed phototaxis in response to a sun stimulus. Stripe fixation was unaffected. F) Statistical comparison of population variance through bootstrapping. We subsampled the second sun presentation for control flies (N=50) and calculated the circular variance 10,000 times to generate a histogram of bootstrapped variances (gray). The red line shows the observed variance for the second sun flight for E-PG silenced flies. The proportion of bootstrapped trials (p) with a smaller variance than the observed variance is shown. G) Maximum intensity projection of GFP expression pattern of split-Gal4 line SS00096.

PUBLICATIONS

2018


Leitch, K. J. and Van Breugel, F. and Dickinson, M. H. (2018) Long-distance navigation of Drosophila melanogaster in the field. Integrative and Comparative Biology, 58 (S1). E130. ISSN 1540-7063. Download <Download>

Melis, J. M. and Lindsay, T. and Dickinson, M. H. (2018) Mapping steering muscle activity to 3-dimensional wing kinematics in fruit flies. Integrative and Comparative Biology, 58 (S1). E152. ISSN 1540-7063. Download <Download>

Giraldo, Y. M. and Dickinson, M. H. (2018) Neural basis of sun-like navigation in Drosophila. Integrative and Comparative Biology, 58 (S1). E76. ISSN 1540-7063. Download <Download>


2017


Dickerson, B. H. and Dickinson, M. H. (2017) Drosophila haltere steering muscles are active during voluntary maneuvers and are directionally tuned. Integrative and Comparative Biology, 57 (S1). E245. ISSN 1540-7063. <Download>


2016


Lindsay, T. H. and Dickinson, M. H. (2016) Functional imaging from the muscles of the fruit fly wing-hinge during tethered flight. Integrative and Comparative Biology, 56 (S1). E128. ISSN 1540-7063. Download

Agrawal, S. and Dickinson, M. H. (2016) Influence of female orientation and pigmentation on male positioning during courtship. Integrative and Comparative Biology, 56 (S1). E3. ISSN 1540-7063. Download

van Breugel, F. and Dickinson, M. (2016) Mysterious diving flies of Mono Lake. Integrative and Comparative Biology, 56 (S1). E227. ISSN 1540-7063. Download

Suver, M. P. and Dickinson, M. H. (2016) Sensory integration by descending interneurons in the flying fruit fly. Integrative and Comparative Biology, 56 (S1). E216. ISSN 1540-7063. Download

2015


Molecular and Genome-Wide Studies of DNA Replication and Chromosomal Instability

Our laboratory has been generally interested in how cells proceed through the cell cycle in an orderly manner. In order to undergo division, cells must replicate their DNA during S-phase and then distribute the duplicated copies of their genomes equally to daughter cells at M-phase or mitosis. In earlier years, we focused mainly on the enzymatic network that induces the entry of cells into mitosis. A master regulatory kinase called MPF triggers mitotic entry by phosphorylating a myriad of cellular proteins. These phosphorylations lead to the hallmark events of mitosis such as chromosome condensation, nuclear envelope disassembly, and assembly of the mitotic spindle. MPF, which stands for maturation-or mitosis-promoting factor, is a heterotrimer containing a cyclin, a cyclin-dependent kinase (Cdk), and a small ancillary protein Cks protein. The kinase subunit of MPF is Cdk1, the founding member of this family--it was historically known as Cdc2. MPF also typically contains one of the B-type cyclins.

In order for MPF to induce mitosis, it is essential that prior events in the cell cycle have occurred normally. Notably, the cell must have copied all of its genomic DNA accurately during S-phase. In addition, the DNA must also be free of damage in order for the cell to begin division. If a cell has not replicated its DNA accurately or has suffered damage in the genome, various checkpoint mechanisms impose a blockade to mitotic entry. This delay allows time for the cell to repair DNA lesions. These checkpoint responses have additional physiological consequences. For example, these pathways can...
influence the transcriptional program of the cell, help to stabilize aberrantly stalled replication forks, and participate in the decision to engage in apoptosis in the event of very severe damage.

Checkpoint pathways consist of sensor proteins that detect problems with the DNA and effector proteins that, for example, regulate the function of cell cycle control proteins. Various mediator proteins manage interactions between sensor and effector proteins in order to control the specificity and efficiency of checkpoint pathways. In cells with incompletely replicated DNA, a master regulatory kinase known as ATR functions near the apex of the checkpoint pathway. The action of ATR ultimately leads to the activation of a downstream effector kinase known as Chk1. A distinct kinase called ATM becomes activated in cells with various forms of damaged DNA, such as DNA with double-stranded breaks (DSBs). Both ATR and ATM are members of the phosphoinositide kinase-related family of protein kinases (PIKKs).

More recently, much of our work had involved a study of the molecular pathways that lead to the activation of ATR. We have also been interested in the targets of this kinase and the roles of these targets in checkpoint responses. For example, we found that the activation of ATR occurs through interaction with a specific activator protein called TopBP1. We also identified a novel mediator protein called Claspin that enables activated ATR to recognize and phosphorylate Chk1. We pursued a thorough characterization of this pathway in order to elucidate new players and regulatory principles.

These efforts led to the identification of a novel replication protein called Treslin that associates physically with TopBP1. We proceeded to show that Treslin, along with a binding partner called MTBP, activates the replicative helicase at replication origins throughout the genome. We are now employing molecular and genome-wide studies to elucidate how, when, and where the Treslin-MTBP complex triggers the initiation of replication in human cells. Overall, these studies should eventually help us understand how cells maintain the integrity of their genomes. This issue is very relevant to human health because an overarching problem with cancer cells is that such cells have suffered a catastrophic deterioration in the mechanisms that maintain genomic stability.

PUBLICATIONS

2017


2019
Michael B. Elowitz
Professor of Biology and Bioengineering

Collaborators
Yaron Antebi, Long Cai (Caltech), Elliot Hui, Jordi Garcia-Ojalvo, Mitchell Guttmann (Caltech), Carlos Lois (Caltech), Rong Lu, Jay Shendure, Alex Schier.

Postdoctoral Scholars
Amjad Askary, Mark Budde, Zibo Chen, Alejandro Granados, Bo Gu, Felix Horns, Nicolas Pelaez, Akanksha Thawani.

Graduate Students
Duncan Chadly, Lucy Chong, Ke-Huan Chow, Michael Flynn, Jan Gregrowicz, Heidi Klumpe, Rachael Kuintzle, Mathew Langley, Yitong Ma, Christina Su, Martin Tran, Sheng Wang, Ronghui Zhu.

SURF Undergraduate Students
Jesus del Rio, Nevidita Kanrar, Catherine Ko, Margaret Sui,

Research and Laboratory Staff
Jo Leonardo, James Linton, Leah Santat, Michaela Ince, Japreet Kohli

Financial Support
Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research At USC
Caltech Merkin Institute for Translational Research
Damon Runyon Fellowship
Hannah Gray Fellows Program (HHMI)
Howard Hughes Medical Institute (HHMI)
Intel Corporation
Jane Coffin Childs (HHMI)
National Institute of Health (NIH)
Paul G. Allen Frontier Group
Rett Syndrome Research Trust
The Donna and Benjamin M. Rosen Bioengineering Center
The Paul G. Allen Family Foundation
Fig. 1 Combinatorial signaling in the BMP pathway: global analysis of multiple cell contexts reveals global BMP ligand equivalence groups.

Fig. 2. Design of the CHOMP system: composable protease units can regulate one another in arbitrary configurations with diverse functions and interface directly with endogenous protein pathways without modifying the genome or entering the nucleus.

Fig. 3. intMEMOIR connects single-cell spatial, molecular state, and lineage information in adult Drosophila brain; example images showing single cell resolution imaging of endogenous expression and intMEMOIR array state in the same tissue sample.
BUILDING TO UNDERSTAND: PRINCIPLES OF GENETIC CIRCUIT DESIGN

In living cells, circuits of interacting genes, proteins, and other molecules allow cells to perceive signals in their environment, process information, and make decisions. Understanding these circuits is critical for controlling cells precisely and predictively, and for developing new types of cell based devices. Research has already identified many of the components and interactions within these circuits. Nevertheless, in most cases, it remains astonishingly difficult to answer basic questions about their design and operation. These circuits are typically dynamic, full of feedback loops and nonlinearities, and subject to stochastic fluctuations, or noise. To address these issues, we take a “build to understand” approach, in which we combine synthetic biology methods, to control the architecture of genetic circuits, with single-cell dynamic analysis, to follow the behavior of those circuits in individual cells. The lab is now focused on core systems that are critical for multicellular development, typically in mammalian cells. These include cell-cell communication systems such as Notch, Bone Morphogenetic Protein (BMP), and Sonic Hedgehog; epigenetic memory systems; fully synthetic circuit sense and respond and history recording systems; and cell fate decision-making circuits.

**Synthetic Biology.** We construct synthetic genetic circuits and study their behavior in individual cells. These synthetic circuits are simpler counterparts to the complex circuits one finds in nature or provide new functionality for potential therapeutic approaches. Early on, we constructed circuits that exhibited oscillations and other dynamic phenomena (e.g., Elowitz & Leibler, 2000; Elowitz et al., 2002; Rosenfeld et al., 2005). We also make use of ‘re-wiring’ perturbations to alter the architecture of natural genetic circuits, as in our recent studies of the genetic competence and stress response systems of Bacillus subtilis (Süel et al., 2006; Süel et al., 2007; Locke et al, 2011).

**Synthetic epigenetic memory systems** enable animal cells to alter gene expression in a heritable manner. Epigenetic systems have been analyzed extensively from the molecular point of view, revealing a large number of chemical modifications to histone proteins, and DNA bases, as well as enzymes that read, write, and erase these modifications. However, it has remained unclear how these systems function from a device point of view and how it might be possible to use these systems to create new memory devices synthetically within cells. To address these issues, we used a bottom up, single cell approach, tracking the dynamics of a gene in response to recruitment of different epigenetic regulators (Bintu et al, Science, 2016). The results revealed that distinct regulators provide different types and timescales of memory, all described by a simple unifying model.

**MEMOIR – A synthetic recording system.** In collaboration with Long Cai, we developed a synthetic system termed MEMOIR that allows cells to record their own lineage and event histories on engineered genomic elements we term scratchpads (Frieda et al, Nature 2017). The system is designed to enable reconstruction of cell histories by end-point imaging of scratchpads using single-molecule FISH approaches. We are now engineering improved versions of MEMOIR, and, in collaboration with Carlos Lois, applying them to understand developmental and disease processes.
Circuits of Hacked Orthogonal Modular Proteases (CHOMP). Synthetic gene circuits have great promise as new types of therapeutics. Most efforts have focused on gene regulation systems. However, protein-level circuits provide many natural functions and could provide more direct and more powerful capabilities in mammalian cells. Recently, we developed a system called CHOMP that is based on engineered proteases that can regulate one another and couple directly to natural inputs and outputs (X. Gao et al, Science, 2018). For example, a CHOMP circuit can selectively kill cells with elevated activation of the Ras oncogene. These systems can be introduced to cells at the RNA level to avoid genome modification.

Design principles of core communication pathways. We analyze the dynamics of natural genetic circuits in order to understand basic principles of their operation. We have developed the ability to acquire and quantitatively analyze large time-lapse movie datasets. These movies allow tracking of circuit dynamics individual cells as they grow and develop. By incorporating several distinguishable fluorescent protein reporter genes in these organisms, we can track multiple circuit components simultaneously. The results constrain models of the corresponding circuits and provide insight into basic principles of differentiation.

A major focus of the lab is now understanding and manipulating the key intercellular signaling pathway that enable cell-cell communication. For example, signaling through the Notch pathway in and between individual mammalian cells. This work showed that same-cell (cis) interactions between Notch and Delta lead to a situation where individual cells can 'send' or 'receive' signals, but cannot do both at the same time (Sprinzak et al, 2010). This design enables the pathway to promote unidirectional communication. We have also been interested in a pervasive feature of signaling systems: their use of promiscuous interactions among many ligands and receptors. In Notch, these interactions suggest that cells may exist in a limited number of distinct signaling states, defined by their ability to send signals to, or receive signals from, cells in other signaling states (LeBon et al, eLife, 2014). Most recently, we discovered that different ligands can activate distinct Notch target programs by activating Notch with different dynamics (Nandagopal, Cell, 2018).

A new focus in signaling is on the intriguing feature of promiscuous ligand-receptor interactions. In systems like the BMP signaling pathway there are many ligands and receptor variants that can all interact with one another. We recently discovered that this “promiscuity” can provide powerful computational functions, allowing cells to process information encoded in ligand combinations (Antebi et al, Cell 2017). We are now exploring many of the ways in which promiscuous ligand-receptor architectures can provide computational functions, and enable cell type specific “addressing” of signals.

We are also extending our analysis of signaling pathways into the spatial domain. We recently showed that it is possible to reconstitute formation of Sonic Hedgehog morphogen gradients in a cell culture system. We used that ability to show how several unusual features of the sonic hedgehog signaling pathway enable it to create precision morphogen gradients that are robust to variations in Sonic Hedgehog production (P. Li et al, Science 2018).

The roles of noise and variability in cellular systems. Genetically identical cells appear to actively generate variability, even in homogeneous environmental conditions. We focus specifically on two complementary
questions: How do cells use intrinsic "noise" (stochasticity) in their own components to make effectively random cell fate decisions? And how do they suppress noise in order to operate reliably despite of variability. Recent work examined these issues in Bacillus subtilis, a very simple prokaryote that exhibits both differentiation and development, as well as in more complicated mammalian cell culture systems. Recently, we have examined the role that noise plays in enabling an alternative mode of evolution through partially penetrant intermediate genotypes (Eldar et al., 2009). We have also studied the way in which dynamic correlations of fluctuations in gene network dynamics can help identify active regulatory interactions (Dunlop et al., 2008). We identified new, widespread modes of regulation based on stochastic pulsing (Locke et al, Science 2011; Cai et al, Nature 2008). Recently, we further discovered a new mode of gene regulation based on regulation of the relative timing of stochastic pulses of transcription factor activation (Lin et al, Nature 2015).

Mouse embryonic stem cells provide an ideal model system to examine these issues. Individual cells can switch spontaneously and stochastically among a set of distinct states. We have developed a combination of time-lapse movies and endpoint measurements of cell states, using single-molecule RNA FISH, that together reveal the otherwise hidden dynamics with which embryonic stem cells switch among distinct states (Hormoz et al, Cell Systems, Cell Systems 2016). We are now extending this approach to address cell fate decision making in other contexts.

Projects in the lab make extensive use of mathematical models of genetic circuits. We are also developing software and tools to improve gene circuit construction and quantitative analysis of movie data.

PUBLICATIONS

2020


Gao XJ, Chong LS, Ince MH, Kim MS, Elowitz MB. **2020** Engineering multiple levels of specificity in an RNA viral vector. BioRxiv doi: https://doi.org/10.1101/2020.05.27.119909

2019


2018


Rosenthal AZ, Qi Y, Hormoz S, Park J, Li SH, Elowitz MB. 2018 Metabolic interactions between dynamic bacterial subpopulations. Elife May 29;7 PMCID: PMC6025961


2017


2016


Hormoz S, Singer ZS, Linton JM, Antebi

The sequencing of eukaryotic genomes and transcriptomes revealed that a remarkably small fraction of both is occupied by protein-coding sequences (<2% in human). Instead, much of what was thought to be "junk DNA" turns out to encode for so-called non-coding RNAs (ncRNA) that, similarly to proteins, regulate important biological processes. We use cell culture and fruit fly as models and a combination of biochemistry, molecular biology and high-throughput sequencing techniques to address how small non-coding RNAs regulate chromatin structure and transcription.

Establishing the correct chromatin state is crucial for maintaining the genomic integrity of the germline. Piwi proteins and their small RNA partners, the Piwi interacting RNAs or piRNAs, function in the germline to repress transposon activity thereby maintaining genomic integrity. Much is known about the cytoplasmic function of Piwi proteins where they repress expression of transposable elements by cleavage of transposon mRNA. Most animals express at least one member of the Piwi protein family in the nucleus, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that the Drosophila Piwi protein is recruited to chromatin and induces transcriptional silencing of its transposon targets. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found. We are currently dissecting the mechanism
by which Piwi induces transcriptional silencing of genomic target loci by identifying factors that are involved in Piwi-mediated silencing and dissecting their specific role in the pathway.

We are also testing the role of Piwi proteins and the associated piRNAs in transgenerational epigenetic inheritance. Piwi proteins and piRNAs are deposited by the mother into the developing egg and are thus transmitted into the embryo. Although the pathway is generally restricted to the germline, the deposited piRNAs have the ability to target and change the chromatin of cells in the early embryo that will give rise to somatic tissue. Accordingly, the pathway might have a much higher impact on chromatin architecture than previously anticipated. We are testing the role of inherited piRNAs in establishing a repressive chromatin state in the progeny both in the soma and in the germline.

Chromatin is known to impact expression of the underlying genomic sequence. Regulation of transcription and the control of the post-transcriptional fate of RNAs – such as RNA processing, RNA editing, nuclear export, translation and RNA degradation – are often viewed as two independent processes. However, accumulating evidence suggests that the two steps are tightly linked and that chromatin is also involved in post-transcriptional gene regulation: some proteins that define the future fate of an RNA bind co-transcriptionally in a manner that depends on specific transcription factors and chromatin structure of the locus. We use a systems biology approach to investigate how chromatin influences the fate of emerging transcripts.

PUBLICATIONS

2017
Rogers AK, Situ K, Perkins EM, and Fejes Toth K. (2017) Zucchini-dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery. Genes Dev. DOI: 10.1101/gad.303214.117

2016
Research Professor of Biology and Biological Engineering
David Glover

Current Postdoctoral Fellows and Scholars
Dr Paula Almeida-Coelho
Dr Alexis L. Braun
Dr Adelaide Carpenter
Dr Nikola Dzhidzhev
Dr Levente Kovacs
Dr Ramona Lattao
Dr Helene Rangone-Briatte
Dr Pallavi Panda

Lab Website

Financial Support
CURRENT GRANTS
ACTIVE

R01 NS113930-01A1 (Glover PI) 05/15/20 – 01/31/25
NIH
$2,510,560
"Generation of diverse centrosomes, cilia and flagellae during development"
Major goal(s): (i) To determine how proteins required for centriole elongation and conversion to a centrosome functionally interact with each other and with other centriole proteins; (ii) To determine the roles of proteins required for centriole elongation and conversion to a basal body in somatic cells and neurosensory cilia; (iii) To determine the roles of proteins required for centriole elongation and conversion to a basal body in gonial cells and in cilia/flagellae development in spermatogenesis

R01 NS119614-01 (Glover PI) 09/30/20 – 08/31/25
NIH
$2,189,340
"Common Regulatory Pathways for the Genesis of Lysosome-Related Organelles and Dynamics of Microtubules during Development"
Major goal(s): (i) To dissect role of the Mauve/LYST and associated proteins in regulating LRO size and trafficking; (ii) To determine role of Mauve/LYST and associated proteins in regulating microtubule dynamics during development of the Drosophila embryo; (iii) To determine the roles of Mauve/LYST and associated proteins in centrosomal maturation

N/A (Glover PI) 10/01/16 – 10/31/21
Welcome Trust
£1,469,889 ($1,910,855)
"Investigator Award: Duplication and Cellular Functions of Drosophila Centrioles"
Major goal(s): To determine spatial regulation of Drosophila Plk4, regulation of its destruction by SCF, and to characterize Plk4’s opposing protein phosphatases; To determine Polo substrates in centriole conversion, how Polo and Plk4 mediate PCM loading and behavior of pericentriolar satellites; To characterize interactions between Sas6 and other centriolar proteins; To determine interactions between the centriole and and cellular membranes, roles of lysozyme-like vesicle protein LYST in mitosis in the syncytial embryo, and roles of centrosomes in triggering primordial germ cell formation.

**PENDING**

R01 CA259382-01 (Glover PI) 04/01/21 – 03/31/26  
NIH  
$2,954,235  
“Supernumerary Centrosomes and Cell Proliferation”

Major goal(s): (i) To determine novel roles of Rac-mediated signaling in regulating centriole numbers; (ii) To determine effects of centriole elongation and cohesion upon centriole numbers and the ability of cells to proliferate; (iii) To determine relationships between negative regulators of cilia elongation, centriole numbers, and cell proliferation.

R01 GM135282-01A1 (Glover PI) 07/01/20 – 06/30/25  
NIH  
$2,766,591  
“Pivotal steps in centriole elongation and conversion to a centrosome”

Major goal(s): (i) To determine interactions of protein networks that regulate centriole length; (ii) To determine key protein interactions required to establish a PCM recruiting platform; (iii) To determine the roles of the Ana1 and Ana3 networks in centriole separation.

R01 TBN (Glover PI) 07/01/21 – 06/30/26  
NIH  
$2,942,755  
“Molecular bifunctionality at the Golgi and centriole in the development of ciliated and secretory tissues”

Major goal(s): (i) To determine Gorab’s requirement in mitotic cycles of embryos and imaginal discs (ii) To determine Gorab’s Golgi functions throughout development; (iii) To determine how Gorab’s physical Golgi associations relate to development.

R01 TBN (Glover PI) 07/01/21 – 06/30/26  
NIH  
$3,496,890  
“Pericentriolar material in the acentriolar spindles of mouse oocytes and early embryos”

Major goal(s): (i) The progressive changes in the organization of aMTOS during development that account for their differential function in the oocyte and early embryo; (ii) Differential interactions of Plk4 with its partner proteins on oocyte and embryo aMTOS that account for its differential behavior in promoting MT nucleation and spindle bipolarity; (iii) The influence of aMTOC clustering and spindle assembly factors on the organization of the acentriolar spindle poles and spindles of oocytes and early embryos.

**AWARDS AND HONORS**

1972 - 74  Damon Runyon Cancer Research Foundation Fellow  
1978  Elected to Membership of the European Molecular Biology Organisation  
1990  Elected to Membership of the Human Genome Organisation  
1992  Elected Fellow of the Royal Society of Edinburgh  
2004  Elected Fellow Fitzwilliam College, Cambridge  
2009  Elected Fellow of the Royal Society
SUMMARY OF RESEARCH / RESEARCH STATEMENT

Our work on cell cycle regulation in Drosophila identified the Polo and Aurora kinases as major mitotic regulatory proteins. Subsequent studies from our lab and from Erich Nigg’s showed that the related Polo-like kinase 4 (Plk4) drives canonical centriole duplication and de novo formation in human and Drosophila cells. We, and others, have shown that Plk4 levels are regulated through autophosphorylation that enables binding of the kinase to the F-box protein of SCF to mediate its destruction. We identified its other main partner to be Asterless (Asl); Asl targets Plk4 to centrioles in Drosophila, in human cells it shares that task with human Spd2 (Cep192).

We found that Drosophila Plk4 phosphorylates Ana2, the fly counterpart of human SAS5, to enable it to recruit Sas6, the key component of the 9-fold symmetrical centriole cartwheel. This triggers procentriole formation after centriole disengagement in telophase, a mechanism that is conserved in human cells.

We recently described an unexpected interaction between Sas6 and a trans-Golgi associated protein, Gorab, that is essential to establish 9-fold symmetry of the centriole and which is necessary for both centriole duplication and basal body formation in Drosophila. The human counterpart of Gorab, which is also associated with the trans-Golgi, is mutated in the wrinkly skin disease, gerodermia osteodysplastica. By copying a missense mutation from gerodermia patients we created mutant Drosophila Gorab unable to localise to trans-Golgi but still able to rescue centriole and cilia defects of gorab null flies. We also found that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype that can be overcome by a second mutation preventing Golgi targeting. Thus, centriole and Golgi functions of Gorab are separable. We have recently used hydrogen-deuterium exchange mass spectrometry to map the interaction sites between Sas6 and Gorab and electron microscopy to visualize how the molecules interact.

Once the 9-fold symmetrical structure is established, the daughter centriole grows to its full length, predominantly in G2 phase. Once achieved the daughter is converted during mitosis into a structure able to nucleate cytoplasmic microtubules, the centrosome. We showed that centriole-to-centrosome conversion requires that the inner-zone centriole protein Cep135 is recruited together with Ana1 to the daughter centriole in the final stages of its biogenesis immediately before mitotic entry and this is followed shortly after by Asl/Cep152 recruitment. More recently we showed that in addition to Cep135, the Rcd4/PPP1R35 molecule is also required for Ana1 recruitment in somatic centrioles but curiously not spermatocyte giant centrioles. We now wish to determine the functional inter-relationships of these proteins in centriole to centrosome conversion and also centriole elongation.

To address the puzzle of the partially overlapping function of centriole proteins throughout development, we study two Drosophila tissues in which dividing cells use centrioles to organise centrosomes at their spindle poles and differentiating cells develop basal bodies that template axonemal structures. These are the leg imaginal disc, in which ciliated neurosensory cells are formed, and the testis, which produces flagellated sperm. In the neurosensory organs, cilia with doublet microtubules are generated from basal bodies having similar morphology to the centrioles of their precursor cells. In the male germ line, the centriole undergoes a dramatic transition between the gonial mitoses and the primary spermatocyte in which its triplet microtubules elongate by almost 30-fold. This growth phase imposes a different set of requirements upon molecules used in phases 2 and 3 of
conventional duplication. Moreover, the resulting pair of primary cilia differ from other cilia in being able to re-acquire the characteristics of centrosomes on meiotic entry. Finally, at the completion of meiosis, the giant centrioles template formation of sperm axonemes, whose morphology differ dramatically from the primary cilia of spermatocytes. Our aim is to determine how the same set of molecules are used to generate these differing centrioles/basal bodies in these two different tissues.

To address the long-standing question of what might multiple centrosomes be doing in tumour cells, we have made a mouse in which we can induce Plk4 expression and hence centrosome overduplication. We found that Plk4 over-expression leads to hyper-proliferation of the skin exacerbated by loss of p53; it also advances tumour formation in p53-/- mice. Mice overexpressing Plk4 developed grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. We found that the balance of cell proliferation to differentiation was disturbed in the skin of these mice apparently because the over-duplication of centrosomes does not permit primary cilia to form. Because the primary cilia are necessary for signaling between cells, this perturbs cell differentiation.

Although Plk4's main function is in centriole duplication, clues to its additional functions are emerging from our studies of its functions in mouse oocytes and early embryos, where centrioles have yet to be assembled and the spindle is organized by acentriolar microtubule organizing centers. We have found that bipolar spindle in the early embryo requires Plk4 in concert with its partner Cep152. However, in the occyte, the MTOCs not only require Plk4 but also Aurora A to become fully active. A more comprehensive understanding of spindle formation at the stages will give insights into many aspects of human fertility.

PUBLICATIONS

2020


Fatalska A., Dzhindzhev, NS., Dadlez, D and Glover, DM (2020) Interaction interface in the C-terminal parts of centriole proteins Sas6 and Ana2 Open Biology in press.


2019

2018


2017


2016


2015


2014


2013


2012


Glover, D.M. (2012) From Yeasts, Flies and Frogs to the Cancer Patient UK Science and Technology 6, publicservice.co.uk


2011


2010


2009


2008


2007


2006

2005


2003


2002


2001


2000


Endre Máthé, Helen Bates, Hella Huikeshoven, Péter Deák, David M. Glover and Sue Cotterill (2000) Importin-α is required at multiple stages of *Drosophila* development and has a role in the completion of oogenesis. Dev. Biol. 223: 307-322


1999


1998


1997


Warbrick E, Lane DP, Glover DM and Cox LS (1997). Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene **14**: 2313-2323


1996

Tavares AAM, Glover DM and Sunkel CE (1996). The conserved mitotic kinase POLO is regulated by phosphorylation and phosphorylates an 85 kDa MAP and β-tubulin. EMBO J 15: 4873-4883


Bhat MA, Philp AV, Glover DM and Bellen HJ (1996). Chromatid separation requires the barren product, a novel chromosome associated protein that interacts with topoisomerase II. Cell 87 1103-111

1995


1994


1993


1992


1991


1990


1989


1988


1987


1986


1985


1984


1983


1982


1981


1980


1979


1978


1977


1976


1975


1974

From signaling in cells to self-repair in jellyfish

My lab currently pursues two research directions. One major focus in the lab pursues the phenomenon of fold-change detection in cell signaling. We have presented strong evidence in the Wnt pathway that cells to respond to relative, rather than absolute, level of signal -- a process we call fold-change detection (Goentoro and Kirschner, 2009; Goentoro et al., 2009). We are using biochemistry, sequencing and genomic engineering to pursue the mechanism of fold-change detection. We are using mathematical modeling and single-cell imaging to test the generality of fold-change computation in other biological systems. This year, we have discovered that a pervasive biological regulation, allostery, can act as logarithmic sensor. Since allostery is present in diverse processes such as metabolism, oxygen and ion transport, protein degradation, this finding suggests that fold-change detection may be present in broader processes than currently appreciated (Olsman and Goentoro, 2016).

A growing focus in the lab studies a mechanically driven self-repair strategy in jellyfish. We have discovered that rather than regenerating lost parts, young jellyfish reorganize existing parts, and regain
radial symmetry – a process we call symmetrization (Abrams et al., 2015; Abrams and Goentoro, 2016). We are using the classic technique of grafting, molecular methods, sequencing, and mathematical modeling to further investigate the molecular nature of symmetrization, the implications it has for the evolution of regeneration, and possible bioengineering applications.

PUBLICATIONS
For a full list of publications
Professor of Neuroscience and Biological Engineering; Investigator, Heritage Medical Research Institute; Director, Center for Molecular and Cellular Neuroscience
Viviana Gradinaru

Postdoctoral Fellows
Jennifer Trewick, Collin Challis, Rosemary Challis, Alon Greenbaum, Elliott Robinson, Anat Kahan, Min Jee Jang, Ken Chan, Nick Goeden, Rajib Schubert

Research Scientist
Helen Huang

Graduate Students
Claire Bedbrook, Nick Flytzanis, Ryan Cho, SriPriya Ravindra Kumar, Michael Altermatt, Xiaozhe Ding, Gerry Coughlin, Tatyana Dobreva, David Brown, Miggy Chuapoco, Paulomi Bhattacharya, Xinhong Chen, Acacia Hori

Beckman Institute Clover Center Director
Benjamin Deverman -> Nick Flytzanis

Undergraduate Students
Andy Kim

Laboratory Staff
Elisha Mackey, Keith Beadle, Pat Anguiano, Yaping Lei, Zhe Qu

Lab Alumni
Lindsay Bremner, Bin Yang, Cheng Xiao, Chunyi Zhou, Greg Stevens, Ken Chan, Claire Bedbrook, Ben Deverman, Andy Kim, Helen Huang, Nick Flytzanis

Lab Website
Financial Support:
NIH Director’s Office and NINDS DP2
BRAIN Initiative U01
National Institute on Aging R01
National Institute of Mental Health R21
The Beckman Institute
Sidney Kimmel Foundation
The Moore Foundation
The Pew Charitable Trusts
Amgen CBEA Award
City of Hope Biomedical Research
Human Frontiers in Science Program
Center for Environmental Microbial Interactions
Rosen Center
CURCI Foundation
Heritage Medical Research Institute
NIH National Institute of Diabetes and Digestive and Kidney Diseases
DARPA

HONORS AND AWARDS

2018  NIH Pioneer Award
2018  Gill Transformative Award
2017  Vallee Young Investigator Awards
2017  Moore Inventor Fellow
2017  Early-Career Scientist Winner in the Innovators in Science Award in Neuroscience (Takeda and the New York Academy of Sciences)
2017  Eppendorf and Science Prize Finalist – essay published in Science

SELECTED INVITED TALKS

2018  Gill Transformative Award Symposium, Bloomington, Indiana
2018  American Society for Virology 2018, College Park, Maryland
2018  World Congress of Pharmacology, Kyoto, Japan
2018  DBS Think Tank, Gainesville, Florida
2018  AAN Annual Meeting, Los Angeles, California
2018  Bernice Grafstein Lecture (PINS) Seminar Series of the Brain & Mind Research Institute Weill Cornell New York City, New York
2018  CZI Workshop on Genetic Medicine, San Francisco, California
2018  Gordon Research Conference, Ventura, California
2018  Wellcome Genome Single-Cell Conference, Hinxton, United Kingdom
2018  Max Planck Symposium, Jupiter, Florida
2018  Keystone Symposia on State of the Brain, Keystone, Colorado
2017  Sofia Zukowska Distinguished Lectureship, Minneapolis, Minnesota
Personal Statement

Prof. Viviana Gradinaru (BS '05 Caltech, PhD '10 Stanford) and her research group in the Biology and Biological Engineering Division at Caltech are developing technologies for neuroscience (optogenetics, tissue clearing, viral vectors) and using them to probe circuits underlying locomotion, reward, and sleep. Prof. Gradinaru has received the NIH Director's New Innovator Award and a Presidential Early Career Award for Scientists and Engineers, and has been honored as a World Economic Forum Young Scientist and as one of Cell's 40 under 40. Gradinaru is also a Sloan Fellow, Pew Scholar, Moore Inventor, Vallee Scholar, and Allen Brain Institute NGL Council Member, and received the inaugural Peter Gruss Young Investigator Award by the Max Planck Florida Institute for Neuroscience. In 2017 she was the Early-Career Scientist Winner in the Innovators in Science Award in Neuroscience (Takeda and the New York Academy of Sciences) and in 2018 she received a Gill Transformative award and an NIH Director's Pioneer Award. The Gradinaru group made advancements in tissue clearing by tissue-binding size-adjustable polymeric scaffolding and also bypassed the challenge of crossing the blood brain barrier by engineering viruses to deliver cargo, such as fluorescent labels, efficiently and (with appropriate regulatory elements) with cell specificity to the entire central nervous system for functional and morphological access to defined cell populations. Recent publications from her group and collaborators also show methods for RNA labeling in cleared samples to map cell identities in brain tissue and infections agents in challenging clinical samples. Viviana Gradinaru has also been very active in teaching and service, participating with lab members in regular technology training workshops at Caltech and for summer courses at Cold Spring Harbor Laboratory as well as running the CLOVER Center (Beckman Institute for CLARITY, Optogenetics and Vector Engineering), which provides training and access to the group's reagents and methods for the broader research community.

Examples from recent work

"Gene Delivery across the Blood-Brain-Barrier, Whole-Body Tissue Clearing, and Optogenetics to understand and influence physiology and behavior"

Gradinaru research group at Caltech develops and employs optogenetics, tissue clearing, and viral vectors to gain new insights on circuits underlying locomotion, reward, and sleep. In most recent work the group has delineated novel arousal-promoting dopaminergic circuits that might be at the root of sleep disturbances common to numerous neuropsychiatric disorders (Cho et al., Neuron, 2017). Present-day neuroscience relies on genetically-encoded tools; in both transgenic and non-transgenic animals, current practice for vector delivery is stereotaxic brain surgery—an invasive method that can cause hemorrhages and non-uniform expression over a limited volume. To address this limitation, we have developed viral-vector selection methods to identify engineered capsids capable of reaching target cell-populations across the body and brain after noninvasive systemic delivery (Deverman et al, Nature Biotechnology, 2016). We use whole-body tissue clearing to facilitate transduction maps of systemically delivered genes (Yang et al, Cell, 2014; Treweek et al, Nature Protocols, 2016). With novel AAV capsids, we achieved brain-wide transduction in adult mice after systemic delivery and sparse stochastic Golgi-like genetic labeling that enables morphology tracing for both central and peripheral neurons (Chan et al, Nature Neuroscience,
Viral vectors that can efficiently and selectively deliver transgenes to target tissues after injection into the bloodstream allow us to genetically modify a high percentage of desired cells with more homogeneous coverage, without the need for either highly invasive direct injections or time-consuming transgenesis. Since CNS disorders are notoriously challenging due to the restrictive nature of the blood brain barrier, the recombinant vectors engineered to overcome this barrier can enable potential future use of exciting advances in gene editing via the CRISPR-Cas, RNA interference and gene replacement strategies to restore diseased CNS circuits.

References
https://www.nature.com/articles/nn.4593
http://www.cell.com/neuron/fulltext/S0896-6273(17)30458-0
http://stm.sciencemag.org/content/9/387/eaah6518

THE BI CLOVER CENTER
Beckman Institute Resource Center for CLARITY, Optogenetics and Vector Engineering Research (Viviana Gradinaru, PI; Ben Deverman, Director)

The mission of the BI CLOVER Center is to facilitate optogenetic studies, custom vector development and tissue clearing projects across Caltech through infrastructure and reagent sharing, training, and further technology and methodology development. By providing these services, the CLOVER Center will catalyze high-impact (often high-risk) research projects by helping researchers test their hypotheses and obtain the preliminary data necessary to secure additional funding for continued technological development or to advance basic science objectives.

PUBLICATIONS

2018

doi: https://doi.org/10.1101/246405


2017


Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and


TEACHING:

Bi/CNS/BE/NB 230, Optogenetic and CLARITY Methods in Experimental Neuroscience: responsible for all lectures and lab. The class covers the theoretical and practical aspects of using (1) optogenetic sensors and actuators to visualize and modulate the activity of neuronal ensembles; and (2) CLARITY approaches for anatomical mapping and phenotyping using tissue-hydrogel hybrids. The class offers hands-on lab exposure for opsin delivery, recording of light-modulated activity, and CLARITY tissue clearing, imaging, and 3D reconstruction of fluorescent samples.

Bi/CNS/NB 164, Tools of Neurobiology (team-taught; covering 1 week out of 10)
Assistant Professor of Biology
Mitchell Guttman

Research Scientists
Amy Chow, Ward Walkup, Patrick McDonel

Postdoctoral Fellows and Scholars
Mario Blanco, Colleen McHugh, Noah Ollikainen, Anthony Szempruch, Joanna Jachowicz

Computational Biologist
Mason Lai

Research Technicians
Grant Bonesteel, Chris Chen, Elizabeth Detmar, Ali Palla, Parham Peyda, Vickie Trinh

Graduate Students
Sofi Quinodoz, Chun-Kan Chen, Abhik Banerjee, Prashant Bhat

Financial Support
NYSCF
NIH Director’s Early Independence Award
Heritage Medical Research Foundation
Pew-Steward Scholar for Cancer Research
Sontag Foundation
NIH 4D Nucleome Project
City of Hope Biomedical Research Initiative
NIH UCSC Center of Excellence for Big Data Computing in the Biomedical Sciences
Agilent Early Career Award
Kairos Ventures

Images from left to right:
Mitch Guttman

A model for how Xist spreads across the X-chromosome by exploiting and altering nuclear architecture.

lncRNAs can scaffold multiple proteins to coordinate gene regulation at specific locations.
RESEARCH STATEMENT

Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Our lab aims to understand the mechanisms by which lncRNAs act to control cellular functions. Specifically, we aim to understand how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to genomic DNA targets, and shaping three-dimensional (3D) nuclear organization.

PUBLICATIONS

2018


2017


2016


2015


Professor of Biology
Bruce A. Hay

Research Fellows
Georg Oberhoffer

Graduate Students
Tobin Ivy

Undergraduate Students
Erin Wang, Martin Holmes, Olivia Healey

Research Staff
Danijela Markovic, Marlene Biller

Collaborators
H.-A.J. Müller¹, M. Guo², John M. Marshall³, Igor Antoshechkin⁴

¹University of Dundee, Scotland
²Department of Neurology and Pharmacology, UCLA
³UC Berkeley
⁴Caltech Genomic Facility

Financial Support
DARPA
USDA, CRDF
California Cherry Board
NIH

Images from left to right: Professor Bruce A. Hay; Parkin-dependent selective removal of deleterious mtDNA (red dots) but not wildtype mtDNA (green dots); Behavior of a Medea synthetic selfish genetic element, superimposed on the painting Medea, by Eugene Delacroix (1838)
In the Hay lab (http://www.haylab.caltech.edu) we are interested in a variety of questions having to do with basic and translational aspects of cell biology and genetics applied to cells, individuals, and populations.

**Cell death, neurodegenerative disease and mitochondrial quality control.** One of our goals is to understand the genetic and molecular mechanisms that regulate cell death, neurodegeneration, and cancer. Much of our work on neurodegeneration, particularly as it relates to defects in mitochondrial function, Alzheimer's disease and Parkinson's disease, occurs in collaboration with the lab of Ming Guo, MD, PhD, a practicing Neurologist and Professor at UCLA (http://guolab.neurology.ucla.edu/). Expression from the mitochondrial genome (mtDNA) is required in almost all cells for respiration. Mutant mtDNA accumulates during adulthood and contributes to many diseases of aging, including Alzheimer's, Parkinson's, diabetes and muscle wasting. We are particularly interested in devising methods for selectively removing damaged mtDNA. We have developed a model of mtDNA mutation accumulation in muscle and are using this system to identify molecules that can promote the selective removal of mutant mtDNA, a form of quality control. In short, our goal is to engineer mtDNA "housecleaning" during adulthood. Recent results indicate that we can promote the removal of ~80% of mutant mtDNA in Drosophila muscle. We are, naturally, interested in expanding this work into human systems, and drug screens.

Recent evidence from a number of labs suggests that mitochondria can move between cells. With respect to the nervous system in particular, there is evidence that mitochondria can move from astrocytes to neurons following stroke and that this promotes neuroprotection. The idea that mitochondria might move between cells in physiological contexts is quite exciting but essentially unexplored. Such mitochondria could provide a localized source of energy production in the recipient cell. They could also be involved in a number of other local mitochondria-based metabolic activities. Finally, because mitochondria carry their own genome, such movement would also be associated with the long-term movement of self-replicating information between cells. Given the high frequency of heteroplasmy for pathogenic mutations noted above, it becomes interesting to determine the contexts in which mitochondria move between cells of the nervous system, and whether this acts to promote normal function and/or spread pathology. In order to address these questions we need to be able to create populations of mitochondria that can be distinguished from each other for long periods. To this end we are working to create transgenic mitochondria, which express a fluorescent reporter from an otherwise wildtype mitochondrial genome.

**Controlling the composition and fate of wild populations.** A second goal addresses three questions in applied evolutionary population biology. 1) Can we bring about reproductive isolation (speciation) between populations of plants or animals that otherwise freely interbreed? Answers to this question have application to the growing number of situations in which plants and animals are engineered to show specific pharmaceutical or agricultural traits. In brief, we would like to be able to limit gene flow between engineered organisms and their wild counterparts. 2) Can we engineer the genetics of populations so that they drive themselves to local extinction? For example, invasive non-native plants and animals cause substantial economic losses and sometimes function as vectors of disease. A number also cause substantial environmental damage, leading in many cases to extensive range reduction and/or extinction of unique, endemic species. Our goal is to develop genetic tricks that drive local extinction of invasive species and disease vectors. 3) Can we drive genes into wild populations
(population replacement) such that all individuals express a trait of interest? With regard to this last aim, we are also interested in developing transgenic mosquitoes that lack the ability to transmit pathogens such as malaria, dengue fever and chikungunya. We are also working with the citrus industry to develop population replacement-based strategies to prevent the citrus psyllid, an invasive insect, from transmitting \textit{Candidatus Liberobacter}, the causative agent of the citrus disease HLB.

\textbf{Engineering organismal physiology: Lifetime, single shot contraception as an example.} In a third project we are working to develop single shot, lifetime (but reversible) contraceptives for a variety of mammalian species. In brief, there remains a need for very long-term or permanent, non-surgical methods of male and female contraception for humans that can be implemented in resource-poor settings in which access to health care may be sporadic. There is also a desire for non-lethal, humane, methods of population control for captive and free roaming animals. We have developed a technology, vectored contraception (VC), which can contribute to these goals. In VC an intramuscular injection is used to bring about transgene-mediated expression of a monoclonal antibody or other protein able to inhibit fertility through action on a specific target. In proof-of-principal experiments we recently showed that a single intramuscular injection of a replication defective, recombinant adeno-associated virus (rAAV) designed to express an antibody that binds gonadotropin releasing hormone (GnRH), a master regulator of reproduction in all vertebrates, results in long-term infertility in male and female mice. Female mice are also rendered infertile through rAAV-dependent expression of an antibody that binds the mouse zona pellucida (ZP), a glycoprotein matrix that surrounds the egg and serves as a critical sperm-binding site. Many proteins known or suspected to be important for reproduction can be targeted using VC, providing a new class of strategies for bringing about long-term inhibition of fertility in many species. We are working to implement several of these, along with strategies for bringing about reversal on demand.

\textbf{Engineering antigen-specific tolerance.} Antigen-specific tolerance is desired in autoimmunity, transplantation, allergy, type I diabetes and other diseases, and is also desirable in the context of therapy with autologous proteins and non-autologous proteins. Such a method can be especially useful for those receiving recombinant proteins. There are a variety of recombinant proteins (RP) that are introduced into people on a chronic basis. Adverse reactions occur in some of these patients. In addition, induction of an anti-drug immune response can result in loss of RP efficacy. Antibodies generated against the RP are one important mechanism by which the abovementioned failures can occur. In some cases the RP is a foreign protein, and the RP is simply seen as non-self and eliminated through activation of an immune response. In other cases, antibodies are raised against therapeutic antibodies, which have undergone extensive “humanization” so as to be rendered as “self like” as possible. However, even in these cases anti-antibody responses are sometimes induced. We are interested in developing ways of tagging proteins that promote their being seen as self-antigens, thereby preventing an immune response, or eliminating an ongoing immune response.

\textbf{Interactive learning and Community Science Academy.} For some years we have been pioneering use of the SKIES learning system (https://www.skieslearn.com/) to enhance student participation in class, to provide new forums for asking questions, and to encourage students to add their own content to my lectures, in the form of links to scientific articles, in-class clarifications, in-depth explanations, and flashcards. More recently, a number of other Professors have begun using this system. An important
goal going forward is to create links between classes so as to create a more general web of knowledge that students and others can use to explore.

In a second, related activity, BH hosted the beginnings of The Community Science Academy at Caltech (CSA@Caltech) (https://csa.caltech.edu/). The goal of CSA, initiated by two Caltech alumni, James Maloney and Julius Su, is to develop curriculum and instrumentation to support low cost but high quality science relevant to community needs. BH also served as PI on a grant from the Camille and Henry Dreyfus Foundation, Special Grant Program in the Chemical Sciences, 2014-2015. The goal of this grant was to foster High School community science and the design of portable custom molecular sensors.

PUBLICATIONS

2019


2018


2017


Zhang, Ting and Mishra, Prashant and Hay, Bruce A. and Chan, David and Guo, Ming (2017) Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP
disease mutants. eLife, 6 . Art. No. e17834. ISSN 2050-084X. PMCID PMC5360448. Download


<Download>
RESEARCH SUMMARY

Synapses are a fundamental unit of computation in the brain and vary widely in their structural and functional properties. Each synapse is a biochemically complex machine, comprised of hundreds of different proteins that vary in both identity and quantity across synapses. The functional significance for most of these differences in molecular composition are poorly understood. Our goal is to understand how molecular diversity at synapses gives rise to useful variation in synaptic physiology, and how this may reflect the specialization of synapses to perform specific useful computations in their respective circuits.

We ask these questions in the context of odor-driven behaviors in the vinegar fly Drosophila melanogaster. We use the fly because we can make targeted, in vivo whole-cell recordings from individual identified neurons corresponding to specific processing channels. This, together with its compact size and sophisticated genetic toolkit, makes the fly olfactory system a powerful experimental system for relating synaptic physiology to circuit function. Our approach is to use carefully designed odor stimuli in combination with genetic strategies to constrain olfactory behavior to depend on the activity at a small number of identified synapses. We use molecular genetics to selectively manipulate these synapses, measure the functional outcomes using in vivo two-photon imaging and electrophysiological recordings, and make direct comparisons of synaptic function with neural coding and behavior.

PUBLICATIONS

2017

Professor of Chemistry and Chemical Engineering
Rustem F. Ismagilov

Postdoctoral Fellows and Scholars
Said Bogatyrev, Si Hyung Jin, Joanne Lau, Octavio Mondragon Palomino,
Roberta Poceviciute, Justin Rolando

Research Technician
Rosie Zedan
Matthew Cooper

Graduate Students
Mary Arrastia, Jacob Barlow, Said Bogatyrev, Erik Jue, Eric Liaw, Roberta Poceviciute, Michael Porter,
Emily Savela, Nathan Schoeppe, Dmitriy Zhukov, Alexander Winnett, Ojas Pradhan, Sarah Simon, Reid
Akana, Matthew Cooper

Staff
Natasha Shelby, Scientific Research Group Manager
Sohee Lee, Administrative Assistant
Jessica Reyes, Study Coordinator
Anna Romano, Research Scientist
Kevin Winzey, Research Support Assistant

Website

Financial Support
Merkin Institute
NSF RAPID
Gates Foundation
JPL - Jet Propulsion Laboratory
Rainin - Kenneth Rainin Foundation (KRF)
DTRA – Defense Treat Reduction Agency
CARB-X –Talis Biomedical Corp.
IRSA - Burroughs Wellcome Fund: Innovation in Regulatory Science Award
MURI - Office of Naval Research (ONR); Army Research Office (ARO)
DARPA - Engineering Living Materials (ELM)
DARPA – Anammox Technology (Winkler)
National Institutes of Health (Guttman)
Caltech: Jacobs Institute for Molecular Engineering for Medicine
Caltech Innovation Initiative
HONORS AND AWARDS
The work by the Ismagilov research group has been recognized by a number of awards, including the Cozzarelli Prize from the National Academy of Sciences (2007), the NIH Director’s Pioneer Award (2007), the ACS Award in Pure Chemistry (2008), Prof. Ismagilov’s election as a fellow of the American Academy for the Advancement of Science (2010), Blavatnik Young Scientist Honoree (2015), a Burroughs Wellcome Fund Innovation in Regulatory Science award (2015) and a Kenneth Rainin Foundation Innovator Award (2018).

USING MICROFLUIDICS TO UNDERSTAND THE DYNAMICS OF COMPLEX NETWORKS

Members of Ismagilov Group have backgrounds in chemistry, biology, engineering, medicine, and biophysics—creating a rich, interdisciplinary environment in which to solve real-world problems. Uniting the group’s diverse interests is a commitment to improve global health, specifically via their work on the human microbiome and in vitro diagnostics.

Ismagilov Lab has pioneered the development of microfluidic technologies (including droplet-based microfluidics and SlipChip). Microfluidics enables ultrasensitive, quantitative biomarker measurements, and provides tools with which to control and understand the dynamics of complex chemical and biological networks. Such capabilities are poised to revolutionize medicine—enabling rapid point-of-care diagnoses under a variety of settings outside of centralized clinical laboratories. Currently, the group is applying these innovative technologies to develop rapid diagnostics of antimicrobial susceptibility. In the context of the human microbiome, the lab works to understand host-microbe interactions that may lead to new therapeutics. These technologies are also enabling new single-molecule measurements and single-cell analyses.

PUBLICATIONS
PREPRINTS


Erik Jue and Rustem F. Ismagilov. 2020. “Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays” medRxiv. medRxiv

2020


2019


Asher Preska Steinberg, Zhen-Gang Wang, and Rustem F. Ismagilov. 2019. "Food polyelectrolytes compress the colonic mucus hydrogel by a Donnan mechanism." Biomacromolecules. pdf


2018


2017


2016


If we could simply look inside a cell and see its molecular components in all their complexes and conformations, cell biology would be all but finished. While this is of course still just a dream, we are developing electron-cryomicroscopy-based technologies to do this for at least the largest structures,
hoping to show both how individual proteins work together as large "machines" and how those machines are organized into "assembly lines" within living cells.

The principal technique we’re developing and using is electron cryotomography (ECT). Briefly, purified proteins, viruses, or intact cells in liquid media are spread onto EM grids and plunge-frozen in liquid ethane. Quick-freezing causes the water to form vitreous ice around the proteins and other macromolecules, preserving their native structure while immobilizing the sample so it can withstand the high vacuum inside an electron microscope. Projection images are then recorded as the sample is tilted incrementally along one or two axes. The microscopes we use are some of only a few like them in the world: 200 or 300 kV, energy-filtered, FEG cryo-TEMs with direct electron detectors. Three-dimensional reconstructions, or "tomograms," are then calculated from the images. In this way we can produce 3-D structures of heterogeneous proteins, viruses, and even whole cells in near-native states to "molecular" (~2-5 nm) resolution.

A main focus of our imaging studies is bacterial cells. Now that over a thousand bacterial genomes have been sequenced, a variety of "omic" technologies are being used to document which genes are transcribed and when, which macromolecules are synthesized and how many of each type are present in the cell, and how they interact in pathways to mediate metabolism and regulate gene expression. Despite this progress, our ignorance about many of the fundamental physical and mechanical processes that occur in a bacterial cell is sobering. We still don’t know, for instance, how bacteria generate and maintain their characteristic shapes, establish polarity, organize their genomes, segregate their chromosomes, or divide. Thus in some sense the "omics" technologies are giving us lists of parts and reactions, but bacterial cells are not merely bags of enzymes. Structural and mechanical details are also needed. This is where ECT can make invaluable contributions.

In recent years, we have used ECT to show by direct visualization that bacteria do indeed have an elaborate cytoskeleton. We have documented structural details of the cell wall, motility machineries, chemosensory signaling systems, and metabolic microcompartments. We continue to work on these subjects and hope to begin to shed light on others, such as the structure and regulation of the bacterial nucleoid.

We have also worked to apply the power of ECT to the structure and maturation of the human immunodeficiency virus type 1 (HIV-1). HIV-1 presents an interesting structural story: following its discovery in the mid-1980’s, thousands (!) of different structures of its 15 different proteins and pieces of its RNA genome have been solved. Nevertheless we still don’t know just how these proteins fit together to form intact, infectious virions, or how their organization changes during assembly, maturation, and infection. The main technical obstacle is that while all HIV-1 virions have the same basic features, each virion is unique in its details. Therefore techniques like X-ray crystallography or NMR spectroscopy, which require a large number of identical objects, can’t be applied to reveal molecular details. We have used ECT to image HIV-1 in its immature and mature states, and are now studying HIV-1 structures inside intact host cells, as well as host factors involved in the HIV-1 life cycle.
Technologically, we are working on optimizing sample preservation, recording better images through improved instrumentation, obtaining more images through automation, and extracting as much biological insight as possible from each image through more sophisticated image processing. For more information, see http://www.jensenlab.caltech.edu.

Publications

2020


Metskas, Lauren Ann and Ho, Samuel and Weaver, Sara J. et al. (2020) *The Effect of Cryo Temperature on Commonly used Fluorophores*, Biophysical Journal, 118 (3). 150a-151a. ISSN 0006-3495. [https://resolver.caltech.edu/CaltechAUTHORS:20200202-110813112](https://resolver.caltech.edu/CaltechAUTHORS:20200202-110813112)


2019


*For a full list of publications [http://www.jensenlab.caltech.edu](http://www.jensenlab.caltech.edu)*
Allen and Lenabelle Davis Professor of Biology
Mary B. Kennedy

Postdoctoral Fellow
Tara Mastro

Research and Laboratory Staff
Rachel Nieto, technician
Elizabeth Bushong, technician
Scott Fordham, summer fellow, University of Michigan

Contributors (Major Collaborators)
Dr. Thomas Bartol, Salk Institute
Professor Kristen Harris, University of Texas at Austin
Professor Terrence Sejnowski, Salk Institute and UCSD
Dr. Mariam Ordyan, Salk Institute and UCSD
Dr. Sara Sameni, Salk Institute and UCSD
Dr. Jost Vielmetter, Member of the Beckman Institute
Dr. Eric Hosy, CNRS, Université Bordeaux, France
Professor Daniel Choquet, CNRS, Université Bordeaux, France

Financial Support
Allen and Lenabelle Davis Foundation
National Institutes of Health (NIMH)
Gift from Fred Blum (PhD, Caltech, 1968)

Images from left to right:
Professor Mary Kennedy
Structure of a portion of CaMKII
Model of calcium ion flowing into spine

MOLECULAR MECHANISM OF SYNAPTIC REGULATION

Memories are stored in the brain as connected neurons "encoding" simultaneous events and impressions. Activation of one of the connected neurons can lead to activation of all of them. Formation of new memories requires the formation of new connections among neurons. One way the brain accomplishes this is to strengthen synapses among neurons that fire together during an event.

Synapses are strengthened in response to their own activation by a process termed “synaptic plasticity.” Our brains have evolved complex mechanisms for controlling the circumstances under which such changes occur. For example, one of the receptors for the excitatory amino acid neurotransmitter glutamate (the NMDA-type glutamate receptor), is able to trigger a long-lasting increase in the strength
of a synapse, but only when simultaneous activation of several synapses on the same neuron causes the postsynaptic neuron to fire an action potential. In other words, "neurons that fire together, wire together." This "plasticity rule" is used to form memories. Synaptic plasticity occurs because activation of the receptors initiates biochemical changes in the signaling machinery located at the presynaptic and postsynaptic sites. The biochemical changes can either increase or decrease the size of the signal produced by the synapse when it fires again.

Our lab studies the signal transduction machinery that controls synaptic plasticity in central nervous system synapses. We have used a combination of microchemical and recombinant DNA methods to decipher the molecular composition of a scaffolded network of signaling enzymes located near the postsynaptic membrane of excitatory synapses in the CNS, called the postsynaptic density (PSD). This network controls the cellular changes that occur to strengthen or weaken synapses. For example, enzymes located in the PSD regulate insertion and removal of glutamate receptors and elaboration of the postsynaptic actin cytoskeleton that underlies the shape of postsynaptic spines.

We are studying the postsynaptic signaling network as a system in order to learn how it regulates the delicate mechanisms of synaptic plasticity. This work involves an interplay between spatially accurate computer simulations of biochemical reactions in the postsynapse, and experiments to test the accuracy of simulations and to help us build new models. We are building computer simulations as part of a long-standing collaboration with Terry Sejnowski and Tom Bartol of the Salk Institute, and Kristen Harris of the University of Texas. Our experiments involve a wide array of techniques including in vitro enzymatic assays and binding assays with purified proteins, cellular pharmacology and electrophysiology with intact neurons, construction of mutant mice by homologous recombination, and measurements of protein phosphorylation in vitro and in vivo.

Mutation of one of two genes encoding a PSD protein termed synGAP that was discovered by our lab causes a relatively common form of non-syndromic intellectual disability. Individuals with only one working copy of the synGAP gene (synGAP haploinsufficiency) have severe intellectual disability often accompanied by autistic symptoms and/or epilepsy. We showed that synGAP has two unrelated functions in the PSD regulatory network. Phosphorylation of synGAP by regulatory protein kinases shifts the specificity of its inactivation of two distinct regulatory "GTP-binding proteins", Ras and Rap. The balance between active Ras and Rap controls the rate of addition of new glutamate receptors to the synapse. Thus, synGAP phosphorylation during induction of synaptic plasticity has a potent influence on the rate of addition of new receptors to the synaptic membrane. Independently, phosphorylation by a similar set of enzymes reduces the binding affinity of the C-terminal tail of synGAP for protein "slots" in the PSD that immobilize glutamate receptors and hold them in the postsynaptic membrane. Thus, more "slots" are made available to bind and immobilize receptors. Disruption of this delicate, precisely controlled regulation of the number of transmitter receptors at excitatory synapses likely underlies symptoms of synGAP haploinsufficiency. Remarkably, recent work from Australia has revealed that a protein intimately involved with Alzheimer’s pathology regulates the amount of synGAP in the postsynaptic density. We are using neuronal cultures to unravel how activation of the NMDA receptor regulates the functions of synGAP. We are also using biochemical methods and simulations to study
how synGAP and PSD-95 are assembled into the PSD structure, and how the assembly process is influenced by additional protein interactions.

PUBLICATIONS

2019


2018


2017


2016


Kennedy, Mary B. (2016) Synaptic Signaling in Learning and Memory. Cold Spring Harbor Perspectives in Biology, 8 (2). Art. No. a016824. ISSN 1943-0264 . Download


Walkup, Ward G., IV and Washburn, Lorraine and Sweredoski, Michael J. and Carlisle, Holly J. and Graham, Robert L. and Hess, Sonja and Kennedy, Mary B. (2015) Phosphorylation of Synaptic GTPase Activating Protein (synGAP) by Ca^{2+}/calmodulin-dependent protein kinase II (CaMII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. Journal of Biological Chemistry, 290 (8). pp. 4908-4927. ISSN 0021-9258. PMCID PMC4335230. Download
Professor of Biology
Henry A. Lester

Member of the Professional Staff
Bruce N. Cohen

Associate Biologist/ Lab Manager
Purnima Deshpande

Postdoctoral Scholars
Selvan Bavan, Matthew J. Mulcahy, Saidhbe L. O’Riordan, Aaron L. Nichols, Kallol Bera

Graduate Students
Zack Blumenfeld, Stephen Grant, Laura Luebbert, Anand K. Muthusamy

Undergraduate Students
Zoe Beatty, Elain Lin, Maquelle Tiffany

CIRM Intern
Theodore Chin

Visiting Associates
Michael J. Marks, Amol V. Shivange, Aron Kamajaya

Financial Support
Estate of G. Louis Fletcher
National Institute of Mental Health
National Institute of Neurological Disorders and Stroke
National Institute on Drug Abuse
California Tobacco-Related Disease Research Program
Tianqiao and Chrissy Chen Institute for Neuroscience
Rosen Center for Bioengineering

Images: the fluorescent biosensor, iNicSnFR3a, revealing nicotine applied to HeLa cells
Left, a version directed to the endoplasmic reticulum, iNicSnFR3a_ER
Right, a version directed to the plasma membrane, iNicSnFR3a_PM
“INSIDE-OUT” MECHANISMS IN NEUROPHARMACOLOGY; SYNAPTIC TRANSMISSION; ION CHANNELS; MOUSE MODELS; NICOTINE AND OPIOID ADDICTION; PSYCHIATRIC DRUGS

Neurotransmitters and drugs acutely activate or inhibit classical targets on the plasma membrane: receptors, ion channels, and transporters. Which mechanisms underlie the effects of chronic exposure to drugs, during days to weeks of exposure? This question is important both for addiction and for some psychiatric drugs (the latter point is explained below). Rather than developing new neural drugs, we seek to understand how present drugs work. Others can read our papers and develop the drugs; and our lab’s alumni have taken up positions in both academic and industrial settings.

In the conventional view, drugs exert their chronic or continuous effects via the classically understood pathways of second messengers, protein kinases, and downstream effectors. Our lab is testing hypotheses in a novel scientific area, “inside-out” neuropharmacology. “Inside-out” mechanisms of chronic drug action begin with binding to the classical targets, but when those targets reside in the endoplasmic reticulum (ER), cis-Golgi, or other organelles. Sequelae of this binding include pharmacological chaperoning, modification of endoplasmic stress and the unfolded protein response, escorting and abduction of other proteins. These mechanisms first arose in our studies of the neural events that occur when an animal is chronically exposed to nicotine. Researchers now agree that that “inside-out” pharmacology partially underlies the pathophysiology of nicotine addiction, the world’s largest preventable cause of death.

We are studying these complex neural processes at several appropriate levels: the genes, the receptor proteins, the effects on neurons, the organization of neurons in circuits, and the resulting behavior of animals. In collaboration with Loren Looger’s lab at the Janelia Research Campus, we are developing genetically encoded fluorescent biosensors for subcellular pharmacokinetics—measuring the levels of neural drugs in the endoplasmic reticulum (ER). As usual, we began with nicotine, and we have found that nicotine enters the ER within a few seconds after it appears near cells. We find that some, but not all, candidate smoking cessation also enter the ER; and we’re exploring correlations between these membrane properties and the drugs’ effectiveness for smoking cessation.

We’re now developing biosensors for other neural drugs. We’ve found that opioids, too, enter the ER within a few seconds.

The field of psychiatric drugs seems ripe for testing “inside-out” ideas, for two reasons. First, nobody understands the events that occur during the two- to six-week “therapeutic lag” in the actions of antidepressant and antipsychotic drugs. We’ve now found that classical antidepressants, the so-called selective serotonin reuptake inhibitors, enter the ER within a few seconds after appearing near cells. Second, the novel antidepressant, ketamine, exerts its effects in just hours; but its target for this is unknown. We’re working to understand ketamine’s action.

We continue to study the biophysics of ion channels that respond to the neurotransmitters acetylcholine, serotonin, GABA, glycine, and (among invertebrates) glutamate. These are termed "Cys-loop receptors.]
At the most fundamental level, with Professor Dennis Dougherty’s group in Caltech’s Division of Chemistry and Chemical Engineering (CCE) and Professor Sarah Lummis of Cambridge University, we apply new types of chemistry to understand how Cys-loop receptors transduce the binding of agonists into the opening of the channels. We also collaborate with Caltech Professors Matt Thomson (BBE), Stephen Mayo (BBE), Douglas Rees (CCE), Lu Wei (CCE), and Axel Scherer (EAS).

We’ve published papers with scientists born in 51 different countries, and with 15 other Caltech faculty members. We’re delighted to greet prospective trainees and other visitors and in our lab on the third floor of the Kerckhoff Laboratory.

PUBLICATIONS
In addition to the download links below for papers in the past three years, we maintain a full public repository of our papers, [here](https://drive.google.com/drive/folders/0Bv8oL8jpl0YtYVZnQihM5nXYYW8?usp=drive_open)
(If the links don’t work, try a different browser)

**2019**
PMID 30660626

PMID 30627659

PMID 30670481

PMID 30718376


2018


2017


Research Professor of Neuroscience
Carlos Lois

Graduate Students
Antuca Callejas, Pratyush Kandimalia, Laura Luebbert, Zsofia Torok

Postdoctoral fellows
Bo Wang, Ting-Hao Huang, Luis Sanchez, Walter Gonzalez

Technical assistants
Jonathan Barnett, Aubrie De La Cruz, Ellsa Wongso

Undergraduate Students
Jessica Yeh

Lab Website:
http://theloislab.com

Financial Support
R01 NS118424-01 (2021-2025)
NIH
Corticostriatal contributions to motor exploration and reinforcement
The goal of this project is to investigate how the circuit dynamics in the cortex influence the variability of striatal learning.

R01 NS104925-01 (2017-2022)
NIH
The self-tuning brain: cellular and circuit mechanisms of behavioral resilience
The goal of this project is to investigate the mechanisms by which the vertebrate brain is able to maintain behavioral continuity in the presence of perturbations in neuronal activity

R01 MH116508-01 (2017-2022)
NIH
MEMOIR: a synthetic genetic system to reconstruct lineage trees and record molecular histories of cells in the brain
The goal of this project is to develop a genetic system to analyze cell lineage information during mouse development
Allen Discovery Center
Paul Allen Frontiers Group

New methods for cell lineage tracing
The goal of this project is to develop new methods to perform cell lineage reconstruction in vertebrates.

RF1MH117825-01 (2018-2020)
NIH
TRACT: a tool to investigate brain connectivity and to genetically manipulate neurons connected by synapses.
The goal of this project is to develop and optimize a new method to enable the identification wiring diagrams in the brain by Trans neuronal activation of transcription

R34NS111661 (2018-2020)
NIH
A genetically encoded method to trace neuronal circuits in the zebrafish brain
The goal of this project is to implement the TRACT tracing system to study the connectivity of the zebrafish brain

RESEARCH SUMMARY

My laboratory is interested in the assembly and restoration of function of neuronal circuits, and we focus on two complementary aspects of this question. First, we study how neuronal circuits are assembled in the brain of vertebrates, and seek to understand how the diversity of new neurons is generated, how they integrate into brain circuits, and the mechanisms by which neurological function is restored after damage or injury. Second, to address these questions our laboratory develops new methods to genetically manipulate the development and biophysical properties of neurons, and to identify the brain’s wiring diagrams.

PUBLICATIONS

2020


2019


Lineage does not regulate the sensory synaptic input of projection neurons in the mouse olfactory bulb. Sanchez-Guardado, LS and Lois C. Elife 2019; 8: e46675


2018


2017


Methods to investigate the structure and connectivity of the nervous system.

2016

Monitoring cell-cell contacts in vivo in transgenic animals. Huang TH, Velho T, Lois C. Development. 2016 Nov 1; 143(21):4073-4084. PMID: 27660327


2015


Bren Professor of Biology and Chemistry
William K. Bowes Jr. Leadership Chair, Division of Biology and Biological Engineering
Stephen L. Mayo

Graduate Students
Aiden Aceves, Sarah Gillespie, Shan Huang, Kadina Johnston, Jingzhou Wang, Marta Gonzalvo I Ulla

Research and Laboratory Staff
Monica Breckow

Lab website

Financial Support
Advanced Research Projects Agency - Energy (ARPA-E)
Army Institute for Collaborative Biotechnology (AROICB)
Defense Advanced Research Projects Agency (DARPA)
Department of Energy (DOE)
Moore Foundation
National Institutes of Health
National Science Foundation
Protabit LLC

Images from left to right:
Professor Stephen Mayo
Designing thermostable proteins for biofuel production
Designing novel protein-protein interfaces

PROTEIN FOLDING AND PROTEIN DESIGN

My research group focuses on developing quantitative approaches to protein engineering. Our work has been at the interface of theory, computation, and wet-laboratory experimentation and has been aimed at understanding the physical/chemical determinants of protein structure, stability, and function. We were the first to show that a force-field-based description of protein structure and stability could be coupled with combinatorial search algorithms capable of addressing the enormous combinatorial space available to protein sequences. In our 1997 Science article we firmly established the field of computational protein design by experimentally validating that a computationally designed protein sequence actually folded to its intended 3-dimensional structure. This and related work have been viewed as the harbinger to a complete solution to the inverse protein-folding problem (that is, the problem of predicting amino acid sequences that will fold to specific protein structures). A solution to this problem will have a profound impact on our ability to understand the evolution of protein sequences, structures, and functions, as well as on prospects for continued development of protein-
based biotechnologies. Relative to the later point, I have been engaged in significant translational activities through companies that I have co-founded: Molecular Simulations, Inc. (currently Accelrys) is focused on chemical and biological information technologies; Xencor is focused on engineered antibodies for oncology applications with several biologics in human clinical trials; and, Protabit is focused on integrating and developing next generation computational protein design software technology.

PUBLICATIONS

2016


2015


Professor of Biology
Sarkis K. Mazmanian

Postdoctoral Scholars
John W Bostick, Livia Hecke Morais, Brittany Needham, Henry L. Schreiber IV, Gil Sharon, Bryan Yoo

Graduate Students
Reem Abdel-Haq, Jessica Griffiths, Anastasiya Moiseyenko, James Ousey

Undergraduate Students
George Daghlian, Noemi Flores, Allison Glynn

Research and Laboratory Staff
Mark Adame, Joseph Boktor, Anastasiya Moiseyenko, Trista Noland, Taren Thron, Yvette Garcia-Flores

Administrative Assistant
Katie Fisher

Lab Website

Financial Support
Amgen, Inc
Axial Biotherapeutics, Inc.
Caltech
Department of Defense
Duke University
Heritage Medical Research Institute
National Institutes of Health
The Michael J Fox Foundation
University of California San Diego
University of California San Francisco

Images from left to Right:
Professor Sarkis Mazmanian
Bacteria Colonizing the Gut
PROFESSORIAL AWARDS AND HONORS
Danisco Microbiome Science Award 2020
Heritage Principal Investigator

EVOLUTIONARY MECHANISMS OF HOST-BACTERIA SYMBIOSIS DURING HEALTH

The Western world is experiencing a growing medical crisis. Epidemiologic and clinical reports reveal a dramatic increase in immune and neurological disorders: inflammatory bowel disease, asthma, type 1 diabetes, multiple sclerosis, autism and Parkinson’s disease. Emboldened by the 'hygiene hypothesis' proposed two decades ago, scientists have speculated that lifestyle changes (vaccination, sanitation, antibiotics) have predisposed developed societies to these disorders by reducing bacterial infections. However, the hypothesis remains without explanation as human exposure to most bacteria does not result in disease. Mammals are colonized for life with 100 trillion indigenous bacteria, creating a diverse ecosystem whose contributions to human health remain poorly understood. In recent years, there has been a revolution in biology toward understanding how (and more importantly, why) mammals harbor multitudes of symbiotic bacteria. Our laboratory has demonstrated for the first time that intestinal bacteria direct universal development of the immune system, and control complex behaviors in animal models; thus fundamental aspects of mammalian health are inextricably dependent on microbial symbiosis. As humans have co-evolved with our microbial partners for eons, have strategies used against infectious agents reduced our exposure to health-promoting bacteria, ultimately leading to increased disease? We propose that the human genome does not encode all functions required for health, and we depend on crucial interactions with products of our microbiome (collective genomes of our gut bacterial species). By employing advanced technologies in genomics, microbiology, immunology, and neurobiology, we wish to define how the gut microbiome mediates pathogenesis of autism and Parkinson’s disease in animal models. Ultimately, understanding the mechanisms of interaction between gut bacteria and the immune and nervous systems may lead to strategies that harness gut-brain connections to develop novel and natural therapeutics based on entirely new biological principles.
PUBLICATIONS

2020

Donaldson, Gregory P.; Chou, Wen-Chi et al. (2020) *Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice* Nature Microbiology; Vol. 5; No. 5; [Download]

Quinn, Robert A.; Melnik, Alexey V. et al. (2020) *Global chemical effects of the microbiome include new bile-acid conjugations* Nature; Vol. 579; No. 7797; [Download]

Challis, Collin; Hori, Acacia et al. (2020) *Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice* Nature Neuroscience; Vol. 23; No. 3; [Download]

Sampson, Timothy R.; Challis, Collin et al. (2020) *A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice* eLife; Vol. 9; [Download]

2019

Pizarro, Theresa T. and Stappenbeck, Thaddeus S. and Rieder, Florian et al. (2019) *Challenges in IBD Research: Preclinical Human IBD Mechanisms*. Inflammatory Bowel Diseases, 25 (S2). S5-S12. ISSN 1078-0998. [Download]


Ramakrishna, Chandran and Kujawski, Maciej and Chu, Hiutung et al. (2019) *Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis*. Nature Communications, 10 . Art. No. 2153. ISSN 2041-1723. PMCID PMC6517419. [Download]


2018

Griffiths, Jessica A. and Mazmanian, Sarkis K. (2018) *Emerging evidence linking the gut microbiome to neurologic disorders*. Genome Medicine, 10 . Art. No. 98. ISSN 1756-994X. PMCID PMC6302417. [Download]


Lee, Yun Kyung and Mehrabian, Parpi and Boyajian, Silva et al. (2018) Protective Role of Bacteroides fragilis in a Murine Model of Colitis-Associated Colorectal Cancer. mSphere, 3 (6). Art. No. e00587-18. ISSN 2379-5042. PMCID PMC6236802. Download


2017


2016


2015


Yang, Yang and Wang, Chunlin and Yang, Quying and Kantor, Aaron B. and Chu, Huitung and Ghosn, Eliver E. B. and Qin, Guang and Mazmanian, Sarkis K. and Han, Jian and Herzenberg, Leonore A. (2015) Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife, 4. Art. No. 09083. ISSN 2050-084X. Download


FUNCTION OF NEURONAL CIRCUITS

We explore how large circuits of nerve cells work. Ultimately, we want to understand large nervous systems in the same way as we understand large electronic circuits. These days we primarily study the visual system, from processing in the retina to the circuits of the superior colliculus to the control of visually guided behaviors and perception. Here are some of the research questions that guide our explorations:

What visual information is encoded by the neurons in the circuit? This involves recording electrical signals from many neurons, while stimulating the retinal input with visual patterns. Interpreting the relationship between sensory input and neural output involves copious mathematical modeling.

How are these computations performed? For this we gain access to the innards of the circuit using fine electrodes or molecular tools. The ultimate goal here is to summarize the system's function with a neural circuit diagram that efficiently simulates its operation.

Why are the circuits built this way? Much of the structure and function of the early visual system is conserved from mouse to man and probably serve a common purpose. Perhaps to pack information efficiently into the optic nerve? Or to rapidly extract some signals that are essential for survival? To test these ideas, we modify the neural circuits and monitor the resulting effects on visual behavior.
PATENTS


PUBLICATIONS

2020


2019


2018


2017


2016


2015


George W. Beadle Professor of Biology; Investigator, Howard Hughes Medical Institute
Elliot Meyerowitz

Postdoctoral Scholars
Eldad Afik, W. Tyler Gibson, Ting Li, William Nicolas, Yuan Ruan, Paul Tarr, Carla Verna, An Yan, Hanako Yashiro

Rotating Graduate Student
Magdalena Biedroń, Manisha Kapasiawala

Visiting Graduate Students
Shuna Li

Undergraduate Students
Jackie J. Wang, Jianbang (Tony) Liu

Volunteers
Ghizem Altinok, William (Bill) Feng, Leon Kornfeld,

Research and Laboratory Staff
Arnavaz Garda, Daphne Shimoda

Lab Website

Financial Support
HHMI
DARPA
NSF

Images from left to right:
Professor Elliot Meyerowitz
Section of vegetative plant with PIN1::GFP and REV::VENUS fluorescence (photo by Ying Wang)
Shoot apex with epidermal nuclei in green, chloroplasts in red (photo by Adrienne Roeder)

PROFESSORIAL AWARDS AND HONORS
Hirase Award, Japanese Society of Plant Morphology, 2019 (shared among the authors of Ishihara et al. 2019).
GENETICS AND COMPUTATIONAL MODELING OF PLANT DEVELOPMENT

Our laboratory has the goal of understanding the mechanisms of plant development, using both experimental and computational methods to test hypotheses. Land plants develop in two directions, up and down – with up being the shoot and its accompanying leaves and flowers, and down the root. We concentrate on the shoot, and on the set of stem cells that continuously provides the cells for the shoot and its organs, leaves and flowers, throughout the growth of the plant. This set of cells is called the shoot apical meristem. It utilizes a number of different pattern-forming processes that are as yet poorly understood.

The most novel of these processes is cell-to-cell signaling by mechanical, rather than chemical, signals – adding a new modality to developmental signaling. Experiments indicate that physical stress in the shoot apical meristem of Arabidopsis controls at least two aspects of cell biology – the cortical cytoskeleton, and the subcellular location of a transporter (PINFORMED1) for the plant signaling molecule auxin. Cortical microtubules align in shoot apical meristem epidermal cells such that they are parallel to the principal direction of maximal stress when the stress is anisotropic. PINFORMED1 is asymmetrically distributed in the plasma membranes of the same cells, with the highest amount in the membrane adjacent to the most stressed side wall. Cellulose synthase complexes ride the cortical microtubules, thereby reinforcing cells in the direction of maximal stress, which is a negative feedback on stress, and tends to cause cells to expand orthogonally to the maximal stress direction. Auxin, however, weakens walls, allowing cells to expand proportionally to their auxin concentration. As expanding cells (whose direction of expansion depends upon wall anisotropy) stress their neighbors, the neighbors transport auxin preferentially to expanding cells, further increasing their auxin concentration. This is a positive feedback – high auxin in a cell attracts more auxin, and creates more stress. These sets of feedbacks create a supracellular, tissue-wide feedback system that creates plant shape, controls phyllotaxis, and regulates hormone flow. Recent progress in this area includes a detailed characterization of the cell walls of shoot meristems, through which the stresses are mediated; and the discovery of a sensory mechanism that creates slow intercellular calcium waves in mechanically stimulated meristems, that is important in several cellular responses to mechanical force. We also have found feedbacks between the rate of cell division and the chemical and mechanical properties of plant cell walls, with wall composition controlling rate of cell division, and cell division controlling cell wall biosynthetic enzymes.

In addition, the maintenance of the stem cell populations in the shoot meristem is mediated by peptide hormone communication between different regions of the meristem. The peptide CLAVATA3 signals to the cells below the pluripotent stem cells in the apical region called the central zone via transmembrane receptor serine-threonine kinases that include CLAVATA1 and additional related members of the plant leucine-rich repeat receptor kinase family. Recent progress on this system includes finding that the expression domain of the CLAVATA3 gene is negatively regulated by members of the HAIRY MERISTEM gene family.
Additionally, there is a system of small-molecule hormone perception and feedback involving the plant hormones termed cytokinins. These have been shown to play a central role in control of cell division in the meristem. One recent advance in this area has been the development of a computational model that relates cytokinin concentration to the formation and maintenance of different domains of gene expression in the shoot apical meristem, another has been finding the mechanism by which cytokinins control the onset of the cell cycle. A large new series of reporter genes for live imaging have been made in the past years, allowing a more detailed and dynamic view of cytokinin signaling in the shoot meristem.

All of the developmental phenomena described above involve cell-cell interactions – either mechanical, peptide-mediated, or cytokinin-mediated. Indeed, pattern formation and morphogenesis in plants and animals are generally considered to involve cell-cell communication, leading to spatial and temporal control of the state of differentiation (transcriptome) and of the division patterns of cells in a tissue. But there is a class of organisms that have pattern formation and morphogenesis, but not as a result of cell-cell communication, or of cell division. These are single-cell but differentiated organisms, for example marine algae in the genus *Caulerpa*. These algae have the equivalent of leaves, stems, and roots, but each individual is a giant single cell – as large as a meter across - with many nuclei floating in a common cytoplasm. Thus, *Caulerpa* represents principles of development not generally studied in multicellular organisms. We are trying to understand how this giant cell has differentiated organs with specific shapes, without any possibility for cell-cell communication or localized cell division. As part of this we are exploring the genome, transcriptome and cellular behavior of these algae.

Finally, encapsulating the dynamic data and feedback between different modes of signaling in developing tissues has led us to develop mathematical models of plant development, in which the dynamic data we gain from live imaging of growing plant tissues leads to hypotheses expressed as sets of equations, which when solved in a computer model the processes occurring in the real plant. The results from the computer are then used to predict experimental results, and new results are used to refine and alter the models. This iteration brings us closer to robust models of development, and therefore to an understanding of developmental principles. We call this approach to developmental biology Computational Morphodynamics.

**PUBLICATIONS**

2020


2019


2018


2017


2016


2015


Richard Murray Lab

Annual Report | Biology and Biological Engineering | 2020

Thomas E. and Doris Everhart Professor of Control & Dynamical Systems and Bioengineering
Richard Murray

Postdoctoral Fellows and Scholars
Leopold Green, Chelsea Hu, Michelle Mayalu, John McManus

Research Technicians
Mark Prator, Miki Yun

Graduate Students
Samuel Clamons, Andy Halleran, Zoila Jurado, John Marken, Reed McCardell, James Parkin, Cindy Ren, Ayush Pandey, William Poole, Andrey Shur, Rory Williams

Administrative Staff
Monica Nolasco

Lab Website

Financial Support
Air Force Office of Scientific Research
Army Research Office
Defense Advanced Research Projects Agency (DARPA)
National Science Foundation

Analysis and Design of Biomolecular Feedback Systems

Feedback systems are a central part of natural biological systems and an important tool for engineering bio circuits that behave in a predictable fashion... There are three main elements to our research:

- **Modeling and analysis** - we are working to develop rigorous tools for analyzing the phenotype of complex biomolecular systems based on data-driven models. We are particularly interested in systems involving feedback, since causal reasoning often fails in these systems due to the interaction of multiple components and pathways. Work in this area includes system identification, theory for understanding the role of feedback, and methods for building and
analyzing models built using high-throughput datasets.

- **In vitro testbeds** - we are making use of both transcriptional expression systems and protein expression systems to develop "biomolecular breadboards" that can be used to characterize the behavior of circuits in a systematic fashion as part of the design process. Our goal is to help enable rapid prototyping and debugging of biomolecular circuits that can operate either in vitro or in vivo.

- **Biocircuit design** - engineered biological circuits required a combination of system-level principles, circuit-level design and device technologies in order to allow systematic design of robust systems. We are working on developing new device technologies for fast feedback as well as methods for combining multiple feedback mechanisms to provide robust operation in a variety of contexts. Our goal is to participate in the development of systematic methods for bio circuit design that allow us to overcome current limitations in device complexity for synthetic bio circuits.

**Current Projects**

- **Developing Standardized Cell-Free Platforms for Rapid Prototyping of Synthetic Biology Circuits and Pathways.** The goal of this project is to further advance standardized cell-free systems from engineered *E. coli* and other organisms for use in prototyping synthetic circuit and pathway designs. Such standardized systems will both explore the boundaries of cell-free prototyping and characterization, and enable more detailed understanding of key mechanisms, accelerating the usage and broader utility of cell-free systems in industry and academia. The long-term vision for this project is to establish cell-free systems as a platform for implementation of synthetic biological circuits, pathways, and systems, where modular and complex biomolecular systems can be engineered in a systematic fashion. This project seeks to overcome some of the current limitations of cell-free systems through a combination of experimental characterization and computational modeling.

- **Engineering Durable Cell-Free Biological Capabilities for Advanced Sensing and Prototyping**
  The goal of this project is to systematically expand the operating range and utility of cell-free systems sourced from new diverse organisms. These next-generation cell-free systems will enable new capabilities for prototyping and implementing durable synthetic circuit designs. Such standardized systems will not only explore the boundaries of cell-free prototyping and characterization but will also enable proper comparisons of data measured by multiple groups, thereby accelerating the usage and broader utility of cell-free systems in industry and academia.

- **Enabling Technologies for Cell-Silicon Interfacing**
  This project focuses on the challenges faced by traditional detection and diagnostic technologies including shelf-life, signal amplification and sensitivity, continuous monitoring and device lifetime, detection range, and matrix compatibility. Further, it provides the enabling technology to expand functionality in computation and biochemical response for mixed-mode sensing devices.
• **Fundamental Biological Factors Underlying Human Performance: From Molecular Diagnostics and Detection to Behavior and Systems Biology**

In collaboration with researchers at MIT (Lauffenburger) and ERDC (Perkins, Vinas) we are using zebrafish as a model organism for studying gut microbiome-brain interactions, with a focus on how the chemistry of the gut microbiome affects organism behavior, including sleep patterns and stress. Zebrafish provide an outstanding platform due to their maturity as a model organism as well as their transparent state as an embryo, allowing imaging of gut microbes and other biological features.

• **Field-Programmable, Recombinase-Based Biomolecular Circuits**

This project explores the use of recombinases -- integrases, excisionases, and other methods of manipulating DNA -- as platform for engineering biomolecular circuits. Our high-level goal is to develop a design-oriented framework for recombinase-based, genetically-encoded circuits that can be used for detection, diagnostics, and logging of environmental signals and events.

• **Genetic Circuits for Multi-Cellular Machines**. The use of microbial consortia for implementing synthetic circuits and biosynthesis pathways has a number of advantages over design using single strains, including separation and specialization of function, reduction of loading on individual cells, and reuse of limited molecular and genetic components. However, differences in growth rate between different organisms in the consortium and the effects of mutation on community function can interfere with consortium function. We are exploring an experimental framework for distributing circuit and pathway functionality across a collection of cells, and regulating the effects of differential growth rate and mutation in microbial consortia.

• **Robust Multi-Layer Control Systems for Cooperative Cellular Behaviors**. The goal of this project is to develop and demonstrate a multi-layer intra- and inter-cellular control systems integrated to create complex, spatially-organized, multi-functional model system for wound healing. Our system makes use of a layered control architecture with feedback at the DNA, RNA, protein, cellular and population levels to provide programmed phenotypic differentiation and interconnection between multiple cell types. This project is an active collaboration with John Doyle, Michael Elowitz and Niles Pierce.

**Publications**

**2019**

[For a complete list of Publications please see Webpage](#)

**2018**


**2017**


**2016**


Professor of Biology and Geobiology
Dianne K. Newman

Visiting Associates
Dao Nguyen, Colleen Cavanaugh

Postdoctoral Fellows
Brittany Belin, Kurt Dahlstrom, Daniel Dar, Avi Flamholz, Zach Lonergan, Darcy McRose, Melanie Spero, Chelsey VanDrisse

Graduate Students
John Ciemniecki, Lucas A. Meirelles, Elena Perry, Scott Saunders, Elise Tookmanian, Lev Tsypin, Renee Wang, Steven Wilbert

Member of the Professional Staff
Shannon Park (Lab Manager), Jade Livingston (Research Technician Assistant), Kristy Nguyen (Administrative Assistant)

Lab Website

Financial Support
ARO
NIH
NASA
Doren Family Foundation
Schwartz-Reisman Collaborative Science Program
Resnick Sustainability Institute
Center for Environmental Microbial Interactions
Life Sciences Research Foundation (postdoctoral fellowship to Kurt Dahlstrom)
Jane Coffin Childs Foundation (postdoctoral fellowship to Zach Lonergan)
Helen Hay Whitney Foundation (postdoctoral fellowship to Daniel Dar)
Simons Foundation (postdoctoral fellowship to Darcy McRose)
Cystic Fibrosis Foundation (postdoctoral fellowship to Melanie Spero)
OVERVIEW

Our laboratory is interested in how microorganisms co-evolve with their environment (i.e. how microbial metabolic activities change the environment, and how the environment shapes these activities), with a focus on understanding how electron transfer reactions support energy conservation in the absence of oxygen. We are particularly interested in the physiological strategies taken by bacteria when they are growing slowly—the dominant pace of life on the planet, yet one that is poorly understood. Much of our research involves the study of colorful, redox-active metabolites (RAMs) called phenazines, molecules produced by many different types of bacteria. We are interested in how RAMs help structure microbial populations and communities in various contexts, including biofilm aggregates found within human chronic infections or near the roots of plants. Central to our ability to achieve relevant mechanistic insight is our commitment to characterizing the complex contexts that motivate our reductionist research. Ultimately, we are driven by the long-term goal of contributing new approaches to promoting both human and environmental health.

We are an interdisciplinary lab, and seek help from talented scientists of all types to explore these topics. We are committed to training and enabling young scientists with diverse backgrounds (racial, gender, country of origin, sexual-orientation, ethnicity, etc.) to make discoveries during their time in our laboratory and to prepare for a variety of impactful STEM careers.

CURRENT RESEARCH

RAM Physiology
Colorful, redox active metabolites (RAMs) are made by many different microbes. Their redox activity makes them fun to work with because they typically change color depending on their oxidation state. Historically overlooked as "secondary" metabolites, we have shown that phenazine RAMs play critical roles in helping Pseudomonas aeruginosa survive when it is growing slowly, particularly in the context of biofilms. Using diverse genetically-tractable bacteria that make a wide variety phenazines, we continue to explore the molecular mechanisms that underpin the physiological functions of RAMs.

Chronic Infections
Chronic human infections cause major harm, including destroying the lungs of individuals living with cystic fibrosis and resulting in limb amputations due to wound healing failure in diabetics. Because the opportunistic pathogens causing these infections are growing slowly in hypoxic/anoxic environments, they are often physiologically tolerant to conventional antibiotics. We iterate between developing means to characterize the microenvironments in which these pathogens thrive in situ, and using reductionist in vitro approaches to understand how they do so to develop novel therapeutic approaches.

Rhizosphere Studies
In 1962, Rachel Carson wrote in Silent Spring: "There are few studies more fascinating, and at the same time more neglected, than those of the teeming populations that exist in the dark realms of the soil. We
know too little of the threads that bind the soil microorganisms to each other and to their world, and to the world above." These words are more resonant today than ever, especially in the context of climate change and the critical role soil plays in carbon cycling and food security. Accordingly, we have begun to study phenazine-based microbial community interactions in diverse rhizospheres.

**PUBLICATIONS**


Bergkessel, Megan and Babin, Brett M. and VanderVelde, David and Sweredoski, Michael J. and Moradian, Annie and Eggleston-Rangel, Roxana and Hess, Sonja and Tirrell, David and Artsimovitch, Irina and Newman, Dianne K. (2019) *The dormancy-specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas*
aeruginosa. Molecular Microbiology, 112 (3). pp. 992-1009. ISSN 0950-382X. PMCID PMC6736744. https://resolver.caltech.edu/CaltechAUTHORS:20181029-102517113


**Professor Neuroscience**
Yuki Oka

**Postdoctoral Scholars**
Haruka Ebisu, Allan-Hermann Pool, Yuan Zhao, Takako (Ichiki) Yamamoto

**Graduate Students**
Sangjun Lee

**Undergraduate Students**
Tongtong Wang

**Lab Manager**
Brittany Ho

**Volunteers**
Noah George

[Lab Website](#)

**Financial Support**
Edward Mallinckrodt, JR Foundation
Klingenstein-Simons Fellowship Award
McKnight Scholar Award
NIH (UOI, R56, R01)

**RESEARCH SUMMARY**

The long-term goal of our research is to understand how the brain integrates internal body state and external sensory information to maintain homeostasis in the body.

Homeostasis is the essential function that keeps our internal environment constant and optimal for survival. If internal state shifts from a normal environment, the brain detects the changes and triggers compensatory responses such as intake behaviors and hormonal secretion. How does the brain monitor internal state, and how does it generate signals that drive us toward appropriate behavioral/physiological responses?
Our laboratory addresses these key questions using body fluid homeostasis as a model system. Internal depletion of water or salt directly triggers specific motivation, thirst or salt appetite, which in turn drives unique behavioral outputs (drinking water and salt intake). Such a direct causality offers an ideal platform to investigate various aspects of homeostatic regulation: (1) detection of internal fluid balance, (2) processing of depletion signals in the brain, and (3) translation of such brain signals into specific motivated behaviors. We aim to dissect, visualize, and control neural circuits underlying each of these steps by combining multidisciplinary approaches including genetics, pharmacology, optogenetics and optical/electrophysiological recording techniques.

PUBLICATIONS


Bren Professor of Computational Biology and Computing and Mathematical Sciences
Lior Pachter

Lab Manager
Lisa Sledd

Postdoctoral Scholars
Jase Gehring, Vasilis Ntranos, Valentine Svensson

Graduate Students
Eduardo da Veiga Beltrame, Sina Booeshaghi, Tara Chari, Taleen Dilanyan, Gennady Gorin, Kristján Hjörleifsson, Dongyi Lu, Nadezda Volovich, Lynn Yi

Graduate Rotation Students
Tara Chari (subsequently joined the lab), Taleen Dilanyan (subsequently joined the lab), Gennady Gorin (subsequently joined the lab), Zikun Zhu

SURF students and undergraduate research mentoring
Anne Kil, Yelim Lee, Lauren Liu, Kyung Hoi (Joseph) Min

Candidacy exams
Sina Booeshaghi (MechE), Tara Chari (BioE), Gautam Goel (CS), Gennady Gorin (ChemE), Nadezda Volovich (BMB)

Graduate student committees

Thesis committees
Dong-Wook Kim (advisor: David Anderson), Armeen Taeb (advisor: Venkat Chandrasekaran), Lynn Yi (advisor: Lior Pachter)

Undergraduate advising
Advisor for 19 students

Committees
Graduate admissions (Biology), Library committee, Head Librarian search committee, Computational Neuroscience Faculty search, Curriculum Committee, Institute Programs Committee, Pew Scholar Advisory Committee, RECOMB program committee
Teaching
Bi/Be/CS183 (with Matt Thomson)

Invited talks
Joint Mathematics Meetings (January 2019), AlCoB 2019 (May 2019), UCSD BMS 2019 (Sep 2019), Swedish Bioinformatics Workshop (October 2019), Genomes & AI conference (October 2019), UCI CMCF 2nd Annual Symposium on Multiscale Cell Fate (October 2019), MidAtlantic Bioinformatics Conference (October 2019), Colloquium at Brown University (November 2019)

Financial Support
NIH U19MH114830 ($1,953,145), NIH R01HG008164B ($696,263, ended June 2019), NIH RF1AG062324A (co-PI with Linda Hsieh-Wilson, $1,228,600), CIRM CLIN2-11574 (co-PI with PI Saul Priceman at City of Hope, $521,815)

Lior began his career in comparative genomics, initially working on genome alignment, annotation, and the determination of conserved regions using phylogenetic methods. He contributed to the mouse, rat, chicken and fly genome sequencing projects, and the pilot phase of the ENCODE project. More recently he has been working on functional genomics, which includes answering questions about the function and interaction of DNA, RNA and protein products. He is particularly interested in applications of high-throughput DNA sequencing to RNA biology, and is currently developing computational methods and technologies for single-cell genomics assays. Pachter has a B.S. in mathematics from Caltech ('94), a Ph.D. in mathematics from MIT ('99) and initial tenure at Berkeley as a Professor of Mathematics. He started working on biology while a graduate student at MIT, at which time he worked on the mouse genome project. Lior is noted for his success in advancing knowledge about fundamental questions in biology using impactful computational methods and technologies that are widely adopted in the field.

PUBLICATIONS

2019


2018


2017


Assistant Professor of Biology and Biological Engineering
Joseph Parker

Postdoctoral Fellows and Scholars (current)
Adrian Brückner, Sheila Kitchen

Graduate Students (current)
David Miller, Tom Naragon, Julian Wagner, Yuriko Kishi, Han Kim

Technical Staff
Mina Yousefelahiyeh, John Truong

Financial Support
Army Research Office
The Rita Allen Foundation
The Shurl and Kay Curci Foundation
The Esther A. & and Joseph Klingenstein Fund
Simons Foundation
Center for Environmental Microbial Interactions (Caltech)
Tianqiao and Chrissy Chen Institute for Neuroscience (Caltech)

AWARDS AND HONORS
2018 Rita Allen Foundation Milton E. Cassell Scholarship 2018
2018 Klingenstein-Simons Fellowship Award in Neuroscience 2018
2018 Shurl and Kay Curci Foundation Grant 2018
2017 American Museum of Natural History Gerstner Fellowship
2007 Wellcome Trust (UK) “Sir Henry Wellcome Postdoctoral Fellowship
2007 Jane Coffins Childs Memorial Fund Postdoctoral Fellowship (declined)
2007 European Molecular Biology Organisation (EMBO) Long-term Postdoctoral Fellowship (declined)
2007 Royal Entomological Society “Alfred Russell Wallace Award” for Best PhD Thesis of 2005
2001 Gonville and Caius College Smart Scholarship (University of Cambridge)
2001 Imperial College of Science, Technology and Medicine Forbes Prize for “Most Outstanding Student Graduating in the Life Sciences”
2001 UK Science Engineering and Technology Student of the Year Awards, 2001: “UK Biology Student of the Year”
SUMMARY OF RESEARCH / RESEARCH STATEMENT

We are interested in the mechanisms underlying evolutionary change, particularly in the context of symbiosis. Our focus is on the behaviorally complex interspecies relationships that have evolved within the Metazoa. We use rove beetles (Staphylinidae) as our exploratory system, a hugely species-rich clade that has repeatedly evolved highly intimate and phenotypically elaborate symbioses with ants. The widespread evolution of this symbiosis in staphylinids provides a unique paradigm for understanding how obligate interspecies interactions can evolve. We study the core molecular and neurobiological circuitry by which reciprocal signals are exchanged between ant and beetle, fostering their interaction. Our work combines genomics and developmental biology with chemical ecology, microbiology and behavioral neuroscience to explore all facets of the ant-beetle interaction and its evolutionary basis. We have found that some of the most remarkable symbiotic phenotypes have evolved convergently many times in Staphylinidae, often in distantly related lineages. The system illuminates how complex phenotypic changes can arise repeatedly and predictably during evolution.

PUBLICATIONS


Research Professor of Biology and Biological Engineering
Isabelle Peter

Postdoc
Jonathan Valencia

Research and Laboratory Staff
Erika Vielmas, Ping Dong, Deanna Thomas

Visiting Associate
Mike Collins

Financial Support
National Institutes of Health
NSF

Images from left to right:
Isabelle Peter

Scheme of a 72h sea urchin larva showing some of the >70 domains expressing distinct transcription factor combinations
Circuit diagram and Boolean output of a community effect subcircuit controlling gene expression in future hindgut cells

GENOMIC CIRCUITS CONTROLLING DEVELOPMENTAL PROCESS

Our lab studies genomic network circuits that underlie a variety of developmental processes in the sea urchin *Strongylocentrotus purpuratus*. We are using experimental approaches and Boolean computational modeling to explore the relationship between network architecture and regulatory function at all levels of organization, from single nodes to subcircuits to large scale developmental gene regulatory networks (GRNs). In particular, we are focusing on the following projects:

*The GRN controlling development of the neurogenic apical domain:* The gene regulatory networks that control the first thirty hours of sea urchin development are exceptionally well understood, and have been solved by experimental and computational modeling approaches. Only one part of the embryo remains unexplored at the network level, which is the apical neurogenic domain. Our analysis of regulatory gene expression has identified the combinatorial expression of transcription factors specifying individual neurons as well as other cell fates in the apical domain.
Regulatory ontology of the sea urchin larva: The experimental analysis of GRNs in sea urchin embryos has so far been mostly focused on the specification of progenitor domains during pregastrular development. However, after the onset of gastrulation, these cells undergo morphogenesis, cell fate diversification, organogenesis, and cell type differentiation, processes that in some form also occur in other animals and that we would like to understand at the network level. A prerequisite to this endeavor is not only knowing the transcription factors potentially controlling this process but also having a detailed understanding of the developmental process that is programmed by the network. We are addressing both by identifying the combinations of transcription factors, the regulatory states, expressed in specific cell fate domains at subsequent developmental stages up to the 72h sea urchin larva. Our results show the developmental diversification of progenitor cell fates into more than 70 different domains, each expressing a specific regulatory state. This data set not only provides a very valuable resource for the community but also enables network analyses of a variety of developmental processes in this system.

GRN controlling gut organogenesis: Gut organogenesis is a common developmental process in bilaterian animals, and analyzing the GRN underlying this process is technically feasible in sea urchins due to the relatively low number of transcription factors encoded in the sea urchin genome compared to vertebrates. This study also opens the door to the experimental analysis of network evolution underlying the dramatic morphological changes that occurred in the digestive system. We have in the past solved the GRN for early endoderm specification. The analysis of regulatory gene expression during post-gastrular development now enables us to extend this analysis to illuminate the GRN controlling organogenesis of the larval gut.

Computational modeling of regulatory networks: We recently generated a Boolean computational model for the sea urchin endomesoderm GRN to compute the spatial and temporal expression of about 50 regulatory genes in this network based on regulatory information. This Boolean model demonstrates that the endomesoderm GRN model is sufficient to account for the cell-fate specific regulatory states established during early sea urchin development. We are now applying this computational approach to test the behavior of regulatory circuits, and we perform in silico perturbations to reveal circuit design features that are crucial for biological function.

PUBLICATIONS

2019


2018


2017


2016


Fred and Nancy Morris Professor of Biophysics and Biology
Rob Phillips

Graduate Students
Rachel Banks, Suzy Beeler, Griffin Chure, Tal Einav, Vahe Galstyan, Soichi Hirokawa, Bill Ireland, Huen Jin Lee, Muir Morrison, Manuel Razo, Gabriel Salmon, Niko McCarty

Laboratory and Research Staff
Kimberly Berry

Lab Website

Financial Support
National Institute of Health (NIH)
National Science Foundation (NSF)
Howard Hughes Medical Institute (HHMI)
Rosen Scholarships in Bioengineering
John Templeton Foundation – Boundaries of Life Initiative
Moore Foundation – Stanford University Boundaries of Life Initiative

PHYSICAL BIOLOGY OF THE CELL

Our work focuses on several primary areas which serve as case studies in the physical dissection of biological problems.

Most people surveyed would say that Escherichia coli is probably biology’s best understood organism. And yet, out of its more than 4500 different genes, we know nothing about how roughly half of those genes are regulated. Literally nothing – no transcription factor binding sites, no transcription factors identified that regulate those genes. Work in our laboratory is using a combination of mutagenesis, cell-sorting, deep sequencing, mass spectrometry and models from information theory and statistical physics to uncover the regulatory architectures of some of these uncharacterized genes. Once we have these regulatory architectures in hand, we then turn to allied efforts in the laboratory aimed at using statistical mechanical models of gene regulation in conjunction with precision measurements to predict and measure the full input-output behavior of these genes. Further, we are also engaged in using these approaches in the evolutionary setting to explore how transcription factors and their binding sites co-evolve.
The second major thrust of the laboratory focuses on how living organisms use their departure from equilibrium to carry out specific processes such as high fidelity copying of genetic material and faithful segregation of chromosomes. To that end, one of our primary efforts center on the use of optogenetically controlled molecular motors that interact with cytoskeletal filaments to create targeted space-time patterns of cytoskeleton-motor systems. These efforts aim to merge ideas from nonequilibrium statistical physics with some of the most fascinating aspects of living matter.

These efforts culminated in the recent publication of several books, including *Physical Biology of the Cell* and *Cell Biology by the Numbers*, both published by Garland Press.

**PUBLICATIONS**

**2019**

*Predictive shifts in free energy couple mutations to their phenotypic consequences* by Griffin Chure, Manuel Razo-Mejia, Nathan M. Belliveau, Tal Einav, Zofii A. Kaczmarek, Stephanie L. Barnes, Mitchell Lewis, and Rob Phillips *PNAS* 2019. | DOI: https://doi.org/10.1073/pnas.1907869116. | [PDF] | [SI] | Website | Github Repository


*How the Avidity of Polymerase Binding to the -35/-10 Promoter Sites Affects Gene Expression* by Tal Einav and Rob Phillips *PNAS* 2019. | DOI: https://doi.org/10.1073/pnas.1905615116. | [PDF] | [SI]

*Torque-dependent remodeling of the bacterial flagellar motor* by Navish Wadhwaa, Rob Phillips, and Howard C. Berg *PNAS* 2019. | DOI: https://doi.org/10.1073/pnas.1904577116. | [PDF] | [SI]

*Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression* by Rob Phillips, Nathan M. Belliveau, Griffin Chure, Hernan Garcia, Manuel Razo-Mejia, and Clarissa Scholes” *Annual Review of Biophysics* 48 2019. | DOI: https://doi.org/10.1146/annurev-biophys-052118-115525. | [PDF] | [SI]


2018


2017


Phillips, Rob (2017) Membranes by the Numbers. . (Submitted) Download

Professor of Applied and Computational Mathematics and Bioengineering
Niles A. Pierce

Research Scientists
Dr. Maayan Schwarzkopf

Postdoctoral Scholar
Duo Ma

Software Engineer
Cody Newman

Research Technicians
Colby Calvert, Grace Shin

Graduate Students
Zhewei Chen, Kaleigh Durst, Mark Fornace, Jining Huang, Heyun Li, Sam Schulte

Administrative Staff
Melinda Kirk

Lab Website

Research Subgroups
Computational Algorithms
Programmable Conditional Regulation
Multiplexed Quantitative Bioimaging
COVID-19 Diagnostics

Academic Resources Supported
NUPACK is a growing software suite for the analysis and design of nucleic acid structures, devices, and systems serving the needs of researchers in the fields of molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. During 2019, the NUPACK web application hosted 110,000 user sessions totaling 1,500,000 screen minutes and 2,500,000 page views. Molecular Technologies applies principles from the emerging discipline of molecular programming to develop and support programmable molecular technologies for multiplexed quantitative imaging of the programmable molecules of life (DNA, RNA, proteins). The Molecular Technologies team has designed and synthesized custom molecular imaging kits for 450 laboratories and companies.

Images from left to right:
Professor Niles Pierce; Small conditional RNA (scRNA); Multiplexed mRNA expression within a whole-mount zebrafish embryo
Financial Support
Beckman Institute at Caltech
Center for Environmental Microbial Interactions (CEMI)
The Shurl and Kay Curci Foundation
DARPA
National Institutes of Health
National Science Foundation
Rosen Bioengineering Center

RESEARCH ACTIVITIES
Computational algorithms for the analysis and design of nucleic acid structures, devices, and systems; engineering small conditional RNAs (scRNAs) for programmable conditional regulation; multiplexed quantitative bioimaging based on the mechanism of hybridization chain reaction (HCR); development of rapid diagnostic tests for COVID-19.

PUBLICATIONS

https://doi.org/10.1021/acscentsci.9b00340
News & Views: https://doi.org/10.1021/acscentsci.9b00550

https://link.springer.com/protocol/10.1007/978-1-0716-0623-0_8

https://link.springer.com/protocol/10.1007/978-1-0716-0623-0_9

https://link.springer.com/protocol/10.1007/978-1-0716-0623-0_10

https://pubs.acs.org/doi/10.1021/acssynbio.9b00523

250
Images from left to right:
Professor David Prober

Transgenic zebrafish embryos that express red fluorescent protein in Hypocretin neurons and green fluorescent protein in QRFP neurons. These neural populations are comingled but Hypocretin and QRFP are never coexpressed in the same neuron.

Transgenic zebrafish larvae that express Brainbow in Hypocretin neurons. Brainbow allows each Hypocretin neuron to be labeled with a different color, which allows the projections of each neuron to be traced throughout the larva.

GENETIC AND NEURAL CIRCUITS THAT REGULATE SLEEP

More than 10% of Americans suffer from chronic sleep disorders, with an estimated annual cost of $100 billion and for which therapeutic options are poor. Despite the impact of sleep disorders, the fact that we sleep for a third of our lives, and the evolutionary conservation of sleep-like behaviors, the mechanisms that regulate sleep remain poorly understood. It is therefore important to develop simple and cost-effective systems to study the genetic and neural regulation of sleep. Zebrafish are a useful system for these studies because: 1) unlike invertebrates, fish have the basic brain structures thought to regulate mammalian sleep; 2) larval zebrafish are transparent, which makes it easy to monitor and manipulate their neurons; and 3) zebrafish are amenable to high-throughput screens that can identify genes, drugs and neurons that regulate sleep. Zebrafish are therefore a useful system for unraveling the mysteries of sleep. The goal of our lab is to address two fundamental questions: What genetic and neural mechanisms regulate sleep? We are addressing these questions by performing genetic and small
molecule screens, and by testing candidate genes and neurons for their roles in regulating sleep/wake behaviors.

PUBLICATIONS

2020

Bassi, Ivan and Luzzani, Francesca and Marelli, Federica and Vezzoli, Valeria and Cotellessa, Ludovica and Prober, David A. and Persani, Luca and Gothilf, Yoav and Bonomi, Marco. (2020) Knocking-down of the Prokineticin receptor 2 affects reveals its complex role in the regulation of the hypothalamus-pituitary-gonadal axis in the zebrafish model. Scientific Reports. 10 (1) 7632. PMCID: PMC7203128.

2019


2018


2017


Lee, Daniel A. and Andreev, Andrey and Truong, Thai V. and Chen, Audrey and Hill, Andrew J. and Oikonomou, Grigoris and Pham, Uyen and Hong, Young K and Tran, Steven and Glass, Laura and Sapin, Viveca and Engle, Jae and Fraser, Scott E. and Prober, David A. (2017) Genetic and neuronal regulation of sleep by neuropeptide VF. eLife, 6. Art. No. e25727. ISSN 2050-084X. PMCID PMC5705210. Download <Download>


2016


2015


MOLECULAR PROGRAMMING WITH SYNTHETIC NUCLEIC-ACID SYSTEMS

The primary focus of our lab is to design and construct nucleic-acid systems from scratch that exhibit programmable behaviors – at the basic level, such as recognizing molecular events from the environment, processing information, making decisions and taking actions; at the advanced level, such as learning and evolving – to explore the principles of molecular programs that nature creates, to embed control within biochemical systems that directly interact with molecules, and eventually, to re-create synthetic molecular programs that approach the complexity and sophistication of life itself.

More specifically, we are interested in three research directions:

1. How can we develop a truly scalable approach for fully general and efficient molecular information processing, for example, to create arbitrary-sized biochemical circuits with a small and constant number of distinct circuit components, using self-assembled nanostructures as scaffolds to provide spatial organization?
2. How can we create synthetic molecular devices with learning, memory, and advanced signal classification capabilities, such that when these molecular devices operate autonomously within a biochemical or biological environment, they adaptively enhance their performance based on their initial responses to the environment?

3. How can we understand the engineering principles of controlling complex motion at the molecule scale, and of developing robust and systematic approaches for building molecular robots with collective behaviors?

PUBLICATIONS
2020


Albert Billings Ruddock Professor of Biology
Ellen V. Rothenberg

Member of the Professional Staff
Rochelle A. Diamond

Research Professor of Biology
Mary A. Yui

Visiting Associate
Hiroyuki Hosokawa*

Postdoctoral Scholars
Boyoung Shin, Tom Sidwell

Graduate Students
Xun Wang, Wen Zhou

Research and Laboratory Staff
Maria Lerica Gutierrez Quiloan

*Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan

Financial Support
Al Sherman Foundation
Biological Engineering Division Bowes Leadership Chair Fund
Louis A. Garfinkle Memorial Laboratory Fund
National Institutes of Health (NIAID, NICHD, NHLBI)

Images from left to right:
Professor Ellen Rothenberg
Pedigree of a clone of PU.1-GFP expressing cells tracked in culture over time (x axis), showing maintenance of PU.1 expression across multiple cell cycles; PU.1-GFP expression intensity in each cell at each time point indicated by thickness of green bar (courtesy: Hao Yuan Kueh)

Middle: imaging of hematopoietic progenitors developing in culture, green fluorescence from PU.1-GFP expression, red fluorescence from lineage tracker (courtesy: Hao Yuan Kueh)

Right: heat map of transcription factor expression patterns across five stages of early T cell development, two to three biological replicates per stage, as determined by RNA-seq. Red: highest expression, blue: lowest expression, reads per million per kilobase range >10,000 fold (courtesy: Jingli Zhang)
HONORS AND AWARDS, 2019-2020
Distinguished Fellow, American Association of Immunologists (inaugural class)

GENE REGULATORY MECHANISMS FOR T-CELL DEVELOPMENT FROM STEM CELLS

The Rothenberg group studies the gene regulatory mechanisms that guide blood stem cells to ultimate fates as T lymphocytes. This developmental process is distinct from many of the developmental systems studied at Caltech, because hematopoietic stem cells provide a continuing source of new T cell precursors throughout life, and development of new T-cell cohorts is mobilized in fetal life, neonatal life, and on through adulthood. This system is also distinctive because it is particularly good for shedding light on the stepwise choices the cells need to make in order to complete their differentiation as T cells. It is one of the most accessible natural mammalian systems known for revealing molecular mechanisms that control the transitions between multi-potency and cell fate commitment. It offers the ability to track, dissect, and re-engineer this process at levels from single molecules to single cells, from the dynamics of transcription factor binding and remodeling of chromatin to the fates of whole progenitor-derived lineages.

Players and mechanisms up close

Blood precursor cells need to migrate to the thymus and become exposed to sustained Notch1-Delta-like 4 (DL4) interactions there in order to be triggered to differentiate into T cells. All the steps from multipotent precursor to committed T-lineage cell occur in this thymic environment, where cells in each stage are relatively easy to isolate, characterize, and manipulate. The cells pass through a hierarchical decision tree that involves the choice not to become a red blood cell or a platelet, then the choice not to become a B cell, the choice not to become a macrophage or granulocyte, the choice not to become an antigen-presenting dendritic cell, and the choice not to become a natural killer cell, which leaves only various T-cell fates as the last options. This last decision concludes the T-lineage commitment process. The goal of research in this lab is to understand not only how the cells acquire the properties they will need to work as T cells, but also why the options that remain open to the precursors still are open, and how the cells make the decisions they do at each branch point. The mechanisms that we are dissecting provide answers in terms of specific transcription factor actions across the genome, the architecture of gene regulatory networks, and the way that regulatory system logic and genomic molecular biology converge to explain the single-cell dynamics of T-cell lineage commitment.

The main events in early T-cell development can be broken into two major phases, split by commitment. Although both phases are normally dependent on Notch1-DL4 signaling, they involve different “jobs” for the cells. The first phase seems to drive the precursors to proliferate, with only limited acquisition of T-cell characteristics (phase 1). The cells then cross the boundary into the second phase, when they
reduce their proliferation and activate the full T-cell differentiation program (phase 2). In phase 1, the cells are still uncommitted, but as they make the transition to phase 2, they become irreversibly committed to become some kind of T cell. The clean division between these two phases appears to be crucial to avoid derangement of T-cell development and progression toward lymphoma.

The orderly progression from multipotency to commitment is controlled by several distinct families of transcription factors. The Ets-family transcription factor PU.1 and a complex of Lmo2 and the bHLH family factors Lyl1 and E2A appear to be principal actors in the first phase. At the transition to phase 2, another transcription factor that may be a major switch controller is the T-cell specific zinc finger factor Bcl11b. Bcl11b expression turns on dramatically in pro-T cells at the phase 1 to phase 2 transition and never goes off again if the cells remain in the T-cell lineage. We have characterized in detail the gene regulatory networks that depend on activity of PU.1 and Bcl11b at this lineage commitment transition.

Among other factors that play important roles, an important insight has emerged from dissecting the way these factors actually work on the genome and how they affect each other. Both PU.1 and Bcl11b form complexes with transcription factors of the Runx family, which commonly bind to DNA at active regulatory elements. Runx1 levels increase somewhat in T cell development and play substantial roles both in the activation of Bcl11b itself and in the eventual silencing of PU.1. One might expect that constantly expressed factors carry out constant roles throughout the process. However, even when Runx factor levels are unchanging, PU.1 and Bcl11b each exert strong influences over the particular genomic sites that Runx factors choose for their DNA binding. As Runx factors appear to be present only in limiting amounts, their recruitment to one site occurs at the expense of their binding to another genomic site. The result is that gene expression changes coordinately in response to PU.1 or Bcl11b, both at the sites that Runx factors come to and at the sites that Runx factors leave. This could contribute to the switch-like nature of the commitment event in T-cell development.

To establish causality in the way transcription factors themselves are controlled, we have used fluorescent knock-in reporter alleles to track the regulation of PU.1 and Bcl11b expression over time in individual cells by live imaging. We can track cells and their descendants across multiple cell cycles as they select different developmental fates in real time, coupling transcription factor gene regulation changes with the changes in developmental status of living cells. Comparing the response kinetics of different cells starting from a “homogeneous” population gives a direct window into the stringency with which development transitions are controlled. We have used the fluorescent reporter strategy to reveal allele-specific gene regulation as a bottleneck in cellular developmental transitions, and we have found that transcription factor accumulation kinetics in some cases is strongly linked to the regulation of cell cycle. This approach has been extremely important to reveal a large contribution of stochastic all or none gene expression control in individual cells that is easily missed in mass population assays. It has further revealed a major rate-limiting step in gene activation at the level of cis-acting chromatin opening.

Finally, the “dark phase” of the T-cell developmental pathway is the phase 1 period, when the cells express numerous proto-oncogenes and proliferate in the thymus while holding back on full entry into the T-cell program. This phase is likely to be the one that controls the population size flowing into the
thymic pipeline, it is the one that is abnormally re-awakened in T-cell acute lymphoblastic leukemia, and it is the one that may be most variable from the first wave of fetal T-cell development to the post-peak T-cell development in adult mammals after sexual maturity. The scarcity of cells in early T-cell development has historically made phase 1 a difficult period to study in molecular detail, and the factors that are likely to control cell behavior in these early stages are expressed at low enough levels per cell so that common approaches to single-cell RNA analysis yield many false negative results. However, in the past two years, collaborations with the labs of Barbara Wold and Long Cai and great help from the Single-Cell Analysis facility led by Matt Thomson have brought together complementary approaches to help us dissect these populations. They have enabled us to measure the gene expression patterns of >50 of the most important transcription factor genes as well as whole genome-wide transcriptomes in tens of thousands of single cells from the earliest T-cell stages. With powerful new computational tools for analyzing the results, these experiments have shed a fresh and revealing light on the progression of gene expression patterns underlying the earliest stages of T-cell development. By using CRISPR, we are now able to verify the precise roles of many newly appreciated genes as regulators of the onset of T-cell development.

**Current Rothenberg lab projects and investigators**

Bcl11b-dependent gene regulatory network in early T-cell and alternative lineage development  
Tom Sidwell

Runx family factors, chromatin accessibility, and genomic activation in early T cell development  
Byoung Shin, Hiroyuki Hosokawa, Maile Romero-Wolf

Live imaging, computational modeling, and quantitative analysis of early T cell developmental kinetics  
Mary A. Yui, Victor Olariu*, Wen Zhou, Carsten Peterson*

Single-cell transcriptome dissection of regulatory states and developmental trajectories in the “dark phases” of earliest T-cell development  
Wen Zhou, Mary A. Yui (with Brian Williams†, Jina Yun‡)

Distinct, competitive bHLH factor complexes and the gene networks they active to control switching from progenitor-cell to T-cell genomic activity states  
Xun Wang, Peng He‡, Fan Gao§

Gene network dissection of roles of stem/progenitor cell factors in the earliest T-cell development stages  
Wen Zhou, Xun Wang

Chromatin accessibility and T-cell differentiation kinetics of different progenitor waves in ontogeny  
Tom Sidwell

*University of Lund, Lund, Sweden
PUBLICATIONS

2020
Romero-Wolf, Maile; Shin, Boyoung et al. (2020) Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. Journal of Cell Biology; Vol. 219; No. 10


Wang, Xun; Rothenberg, Ellen V. (2020) Illuminating the core of adaptive immunity—how the regulatory genome controls Rag chromatin dynamics. Science Immunology; Vol. 5; No. 51

Hosokawa, Hiroyuki; Romero-Wolf, Maile et al. (2020) Cell type–specific actions of Bcl11b in early T-lineage and group 2 innate lymphoid cells. Journal of Experimental Medicine; Vol. 217; No. 1

2019


2018


Ungerbäck, Jonas and Hosokawa, Hiroyuki and Wang, Xun and Strid, Tobias and Williams, Brian A. and Sigvardsson, Mikael and Rothenberg, Ellen V. (2018) *Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1).* Genome Research, 28 (10). pp. 1508-1519. ISSN 1088-9051. Download <Download>


Gertrude Baltimore Professor of Experimental Psychology
Shinsuke Shimojo

Postdoctoral Scholars
Christopher Berger, Shao-Min Hun

Research Scientists and laboratory managers
Daw-An Wu, Eiko Shimojo

Visiting Associates
Carmel Levitan¹, Tetsuya Matsuda², Alexandre Hideki Okano³, Mohammad Shehata⁴, Noelle R.B. Stiles⁵, Armand R. Tanguay, Jr.⁵, Kyongsik Yun⁶, Takashi Suegami⁷

Visitors
Takuji Kasamatsu, William Liang

Undergraduate Students
Lily Z. Kitagawa, Albert J. Zhai, Anthony Pineci, Steve Guo, Sara Adams, Ishani Ganguly, Jessica Ye, Justin Hyon, Josie Zhang

¹ Occidental College, Los Angeles, CA
² Tamagawa University, Tokyo, Japan
³ Federal University of Rio Grande do Norte, Brazil
⁴ Toyohashi University of Technology and Science
⁵ University of Southern California
⁶ Jet Propulsion Laboratories.
⁷ Yamaha Motors, Co., Ltd.

Lab website

Financial Support
National Institute of Health
Defense Advanced Research Projects Agency (DARPA)
NASA TRISH
Japan Science and Technology Agency (JST) CREST
Tamagawa University
Iwate University
Toyohashi University of Technology and Science
Yamaha Motors
PSYCHOPHYSICAL AND NEURAL STUDIES OF PERCEPTION AND DECISION MAKING IN THE HUMANS

While we continue to examine the dynamic/adaptive nature of human visual perception - including its multisensory, representational, sensory-motor, social, emotional, developmental, and neurophysiological aspects (supported by NIH, NSF, HFSP, and DARPA), we continue our research on "Implicit Brain Functions" and "Interpersonal Implicit Communication" initiated by JST (Japan Science and Technology Corporation) CREST (Core Research for Evolutional Science and Technology). In these projects, we focus on implicit cognitive processes, emotional decision making, social communication, plasticity, and their neural correlates. Our latest projects includes multisensory processing in low vision patients and the extreme periphery, and non-invasive neural modulation by ultra sound (all partly or fully supported by NIH, and will be described later).

Vigorous collaborations have been conducted between our psychophysics laboratory here, and the CREST Japan site located at NTT Communication Science Laboratories, as well as University of Southern California, Huntington Medical Research Institute, Fordham University, Occidental College, and Iwate University. Besides, we continue collaborative efforts on "social brain" with Toyohashi University of Technology and Science, and Tamagawa University. We do also have multiple collaborations with companies, such as SONY, Yamaha (Music), Yamaha Motors, Toshiba, and Kao.

Using a variety of methods including eye tracking, high-density EEG, fMRI and MEG, we examine how exactly peripheral sensory stimuli, neural activity in the sensory cortex, and the mental experience of perception are related to each other in the highly plastic fashion. In particular, we aim to understand implicit, as opposed to explicit or conscious, somatic and neural processes that lead to, and thus predict, conscious emotional decision such as preference. Along the line, we had publications on (a) the first solid neuroscientific evidence for human magnetic sensation (magnetoreception), (b) Dynamic “replay” of visual perception in the “double flash” (auditory-visual) illusion, (c) EEG-based neural feedback to modulate the illusion, and (d) Implicit semantic interference guided by attention.

More recent and most challenging on-going projects in the laboratory include: (1) the intriguing interactions between predictive processes (prior to and thus predicting the mental event or behavior) and postdictive processes (posterior) especially in multisensory processing; (2) the inter-brain causal connectivity under social cooperative interactions (such as playing a game together into “team flow”); (3) Interactions between the top-down executive, and the bottom-up implicit mechanisms in task-conflict, or -interference situations, (4) spontaneous generation of motor rhythms, in relation to intrinsic alpha waves and the dopaminergic pathway, and (5) Various illusions and un-known visual/crossmodal effects in the extreme periphery (>60 deg) of the visual field.
PUBLICATIONS

2019 - 2020


Our research focuses on the study of information processing across networks of neurons, with emphasis on the neuronal mechanisms that underlie learning and memory formation. By recording the simultaneous activity of large numbers of neurons in freely behaving animals, we study the structure of the interactions between the hippocampus and neocortical brain areas and the role of these interactions in learning and memory.

The hippocampus is a brain structure that has long been known to be critical for the formation of new memories. This hippocampal involvement is temporary as memories are gradually established in neocortical stores through the process of memory consolidation and their retrieval becomes independent of the hippocampus. During consolidation recently learned information is progressively integrated into cortical networks through the interactions between cortical and hippocampal circuits.

The direct experimental investigation of these interactions has been difficult since, until recently, simultaneous chronic recordings from large numbers of well-isolated single neurons were not possible.
technically feasible. These experiments became possible with the development of multi-electrode recording techniques. Using these techniques we record the simultaneous activity of large numbers of cortical and hippocampal cells during the acquisition and performance of memory tasks, as well as during the sleep periods preceding and following experience. Our research efforts focus on analyzing the structure of cortico-hippocampal interactions in the different brain states and on characterizing how this structure is modulated by behavior; how it evolves throughout the learning process; and what it reflects about the intrinsic organization of memory processing at the level of networks of neurons. In addition, we combine two-photon imaging and whole-cell recordings in order to characterize the contributions of different neuronal cell types to circuit dynamics.

A significant focus of our current efforts also involves the development of novel technologies for monitoring and manipulating brain activity. Our experimental work is complemented by theoretical studies of network models and the development tools for the analysis of multi-neuronal data.

PUBLICATIONS

2017


2016


Professor of Biology
Angelike Stathopoulos

Research Staff
Leslie Dunipace

Postdoctoral Scholars
Zsuzsa Akos, Theodora Koromila, Frank Macabenta, Susan Newcomb, Vince Stepanik, Jingjing Sun

Graduate Students
Heather Curtis, Jihyun Irizarry, James McGehee

Undergraduate Students
Hsuan-Te (Miriam) Sun, Mohamed Soufi

High School Students
Mia Patzakis

Lab Website

Financial Support
National Institutes of Health – NIGMS, NICHD
Chen Institute Director’s Award
American Heart Association Postdoctoral Fellowship
Baxter Senior Postdoctoral Fellowship

DYNAMICS OF DEVELOPMENTAL SYSTEMS

I. Coordinate Action of Cis-Regulatory Modules

Many genes are pervasively expressed throughout development and exhibit changes of expression in a stage-specific manner. It is appreciated that different cis-regulatory modules (CRMs) act to control dynamic expression; however, not much is known about how CRM order of action is regulated. Using the *Drosophila* embryo as a model system, we have the exceptional opportunity to investigate how CRMs support spatiotemporally-regulated gene expression during the animal’s developmental course. Current experiments focus on advancing understanding of how CRM order of action is controlled.
A necessary technical advance for analysis of dynamic developmental systems is analysis of chromatin conformation on a cell by cell basis, which will support studies of when and how particular CRMs interact with the promoter with temporal and spatial resolution. We are working on developing various technologies to acquire this information. We are also looking broadly at the regulation of genes in time and how the action of CRMs is regulated.

II. Fibroblast Growth Factor Signaling

Fibroblast growth factor (FGF) signaling impacts a number of different cellular functions important for supporting embryonic development. FGF ligands are polypeptide growth factors that bind to cell surface fibroblast growth factor receptors (FGFRs). These receptor ligands trigger tyrosine kinase activity associated with the intracellular domains of their receptors, and thereby elicit signaling responses within cells. Both ligands and receptors exhibit diverse and dynamic patterns of expression that support directional signaling across epithelial-mesenchymal boundaries. In early embryos, FGF signaling controls mesoderm induction and patterning, cell growth, migration, and differentiation; while later functions include organ formation and maintenance, neuronal differentiation and survival, wound healing, and malignant transformation.

Previous studies on FGF signaling in Drosophila embryos have demonstrated that mesoderm cell movements are disorganized in the absence of FGF signaling. For instance, signaling through the Heartless FGFR is important for controlling mesoderm spreading during gastrulation and also, subsequently, for migration of caudal visceral mesoderm cells in the embryo. To support these collective cell migrations, our preliminary studies have suggested a number of possible roles for FGF signaling but the exact role, understood at a molecular level, remains unknown.

Currently, we are investigating the following questions: How are FGF ligands different and how is their activity regulated? Do ligands have distinct functions and, if so, are they differentially regulated? How does FGF signaling regulate cell movement? Is there a link between FGF signaling and regulation of cell adhesion? Because the Drosophila system is much simpler than vertebrates (3 FGF-FGFR combinations in the fly versus 120+ in vertebrates), we have the exceptionally opportunity to provide novel insights into how this signaling pathway is regulated and acts to support development.

III. Collective Migration of Cells

Cell migration is a crucial process during embryonic development as it results in rearrangement of cells from one part of the embryo to another, effectively controlling cell-cell interactions to drive cell differentiation and organogenesis. The shape of most complex organ systems arises from the directed migration of cohesive groups of cells. Thus cell migration must be regulated temporally and spatially for organisms to develop properly. The overlying goal of our research objective is to provide insight into how cells within a migrating groups sense their environment and how this contributes to their collective movement.

We study caudal visceral mesoderm (CVM) cell migration, because it serves as an excellent system to provide insight into collective cell migration. These cells exhibit directed cell migration during embryogenesis as two distinct groups on either side of the body, moving from the posterior-most position of the embryo toward the anterior. The cells undergo the longest-distance migration in all of Drosophila embryogenesis, but little is understood about how they are directed along their course. CVM cells are so named because they originate from a cluster of cells located at the posterior-most end of the...
embryo, the caudal mesoderm. First, the cluster separates into two, in a symmetric fashion, such that half the cells distribute to the left and the other half to the right of the body. Subsequently, these two groups, of approximately twenty cells each, undergo coordinate and directed movement toward the anterior of the embryo. The migration ensues over six hours and throughout the entire course of the migration the two groups migrate synchronously. This migration is necessary to position CVM cells along the entire length of the developing gut. At the end of their migration, CVM cells fuse with fusion-competent myoblasts to form the longitudinal muscles which ensheath the gut.

Live in vivo imaging of CVM cells is being used to provide insight into how cells interact with their environment. Recent studies have focused on how these the migration of multiple cell types is interdependent within embryos, as well as how migrating cells can shape the substrate they migrate upon to support collective cell migration.

IV. Dorsoventral Patterning Gene Regulatory Network

The dorsal-ventral (DV) patterning gene regulatory network (GRN) of Drosophila embryos is considered one of the most extensive GRNs in terms of number of characterized genes and cis-regulatory modules. Subdividing the embryo into distinct domains of gene expression is an important function of the DV GRN, which encompasses the first three hours of development: the embryonic period up to and including cellularization just preceding gastrulation. In part, this subdivision is necessary to set-up activation of signaling pathways at later stages through differential expression of receptors and ligands. Subsequently, these early patterning events support tissue differentiation and also control cell movements required for the generation of a multilayered embryo: the developmental actions that encompass gastrulation. Only recently has it come to light that the transcription factor levels in the early embryo can be dynamic. We hypothesize these dynamics support robust patterning.

Most studies of early zygotic gene expression consider one or two time-points spanning the first four hours of early Drosophila development, and yet our recent analysis suggests that gene expression patterns change on the order of minutes rather than hours. For example, recently, we uncovered dynamics for the transcription factor Dorsal, a morphogen and as such a pivotal player in DV patterning. The levels of this factor almost double from one nuclear cycle to the next, in a matter of minutes (~10'). In addition, the activation of many signaling pathways is delayed, as signaling is not active until the embryo is cellularized about three hours following fertilization. Therefore, one major limitation of the current Drosophila DV GRN is that in its current form it considers all of early development as a single time-point.

We aim to expand our understanding of the DV patterning GRN: a developmental system, which uses morphogens to support patterning and undergoes rapid development. In particular, we are interested in why genes exhibit different dynamic gene expression profiles, and understanding whether these dynamics impact developmental progression? Novel approaches including use of the live in vivo imaging and genome editing are being used to provide answers.

PUBLICATIONS

2019


**2018**


**2017**


Thomas Hunt Morgan Professor of Biology
Paul W. Sternberg

Member of the Professional Staff
Hans-Michael Müller

Graduate Students
Katie Brugman, Jonathan Liu, Wen Chen, Cynthia Chai, Sandy Wan Rong Wang, Porfirio Quintero, Sarah Cohen, Elizabeth Holman, Mark Zhang

Postdoctoral Fellows
David Angeles, Mengyi Cao, Chun-Hao Chen, James Lee, Hillel Schwartz, Pei- Yin Shih, Han Wang, Yan Jin, Wen Chen

WormBase Staff
Juancarlos Chan, Wen Chen, Christian Grove, Ranjana Kishore, Raymond Lee, Yuling Li, Jane E. Mendel, Cecilia Nakamura, Daniela Raciti, Gary Schindelman, Kimberly Van Auken, Daniel Wang, Karen Yook, Marie-Claire Harrison, April Jauhal Ettington,

Collaborators

Research and Laboratory Staff
Shahla Gharib, Barbara Perry, Sarah Torres, John, Wilber Palma, Stephanie Nava, Heenam Park, Daniel Oh, Carmie Puckett-Robinson, Mandy Tan

Visitor
Carmie Puckett-Robinson

Website

Financial

Support
National Institutes of Health, USPHS
Simons Foundation
NEMATODE SYSTEMS BIOLOGY

To understand how a genome specifies the properties of an organism, we focus on the nematode *C. elegans*, which by virtue of its small cell number and its stereotyped anatomy, development, and behavior is amenable to intense genetic analysis. Because we know its complete genome sequence, this worm also serves as a model for using genomic information to glean biological insight. We seek to understand how signals between cells are integrated to coordinate organ formation and how genes and neural circuits control the ability to execute stereotyped behavior in response to environmental and nematode-produced signals. Our strategies include identification of genes through genetic and molecular screens, detailed observation of cell and organism behavior, and cycles of computational and experimental analyses. We also use comparative analysis to take advantage of conservation to define key elements of the genome, of regulatory circuits, and of divergence to understand unique features of a species. Many of the genes we identified are the nematode counterparts of human genes, and our experience is that many of our findings apply to human genes as well. Indeed, we are begun to test the effects of human variants on protein function in orthologous human proteins. Also, *C. elegans* serves as a model for hundreds of parasitic nematodes, and we study nematode-specific genes to discover new ways to prevent or cure nematode infections of humans, animals, and plants.

**Neural circuits and computation projects.** *C. elegans* has a numerically simple nervous system. Its entire connectome has been described, 40 years ago for the 302 neuron hermaphrodite. How can we not understand it yet? Part of the problem is lack of tools. However, *C. elegans* researchers, including our collaborators Aravi Samuel, Vlad Susoy (Harvard University and Vivek Venkatachalam (Northwestern University), can image the entire nervous system in behaving animals. Moreover, our lab developed an efficient system (cGAL) to **make each neuron genetically accessible** so that the full set of optogenetic and molecular genetic techniques can be applied systematically. We are making a complete set of transcriptional Drivers that allow expression in single neuron types in the hermaphrodite and male. Another advance in using genetics for subtle phenotypes is our ability to make clean loss-of-function mutants using CRISPR technology and also true revertants that provide isogenic controls (our “STOP-IN” method). While these tools can be improved, they are a great advance over five years ago. The final piece is our being able to “**think like a worm**,” and understanding what the worm’s brain computes. We are thus pursuing two projects designed to confront and prevail over the complexity of an animal’s nervous system. In one project, we are analyzing how the worm computes on environmental inputs and chooses between rapid reproduction and diapause (the dauer larval state). This decision takes place over about 12 hours and involves many sensory neurons and interneurons. We are computationally modeling aspects of the decision-making process and the specific circuits with collaborator Cengiz Pehlevan (Harvard University). The second project addresses how the male senses his mating partner, and whether he has a neural representation of her location. Taking advantage of the now known male connectome, whole male tail imaging, and cGAL, we are developing computational
models with collaborator Scott Linderman (Stanford University) as we elucidate the neural circuits involved in each “step” of male copulatory behavior building on our comprehensive cell ablation studies of male-specific neurons.

**Nematode-specific chemical communication.** Our long-term collaboration with Frank Schroeder (Cornell University) has identified hundreds of related nematode-specific small molecules, many of which we found to have biological effects primarily in social communication. While we are studying the effects of some as regulators of dauer decision (see above), we want to understand their regulation. Regulatory studies are better done by studying the enzymes that control levels of small molecules rather than mass spec assays; hence, we are trying to identify the enzymes that control the production and degradation of specific ascarosides. One approach is to knockout each candidate enzyme with our STOP-IN method and profile the mutant metabolomes. If we see an interesting signal in the metabolomic profile, we test the isogenic control, and also examine developmental, physiological and behavioral phenotypes.

**Gene function and networks.** We try to comprehend gene function and the significance of variants in a number of ways. We are part of a *C. elegans* knock-out by knock-in consortium. We are targeting *C. elegans* genes with human disease relevance, conserved genes of unknown function, and nematode-specific genes that might be involved in parasitism. We are also exploring the use of transcriptomes as phenotype. We find they are highly sensitive, and can identify phenotypes in what experts have long thought were ‘wild type’ animals. We are assessing the functional consequences of missense variants from human genetic studies using *C. elegans*. Our initial project focused on autism spectrum disorder associated variants. We find that more than half of the ASD variant that we can study have effects on gene function in *C. elegans* orthologs. We are now focusing on specific genes for which we can comprehend with respect to the dauer decision discussed above.

**Cell migration.** We are studying aspects of cell migration, focusing on the male linker cell because it undergoes a striking and stereotyped long-range migration that involves distinct phases and directions. Our single-cell transcriptional profiling of the linker cell at distinct stages identified many classes of interesting genes. One class comprises acetylcholine receptors, both ionotropic and metabotropic, which we are studying in collaboration with Mihoko Kato (Pomona College). We have discovered that GAR-3, a muscarinic receptor, and Gq are involved in efficient linker cell migration. We also found a novel transmembrane protein LINKIN that is necessary for attachment of the linker cell to the trailing vas deferens cells as it migrates. With collaborator Tsui-Fen Chou (Caltech), we are studying the roles of interacting proteins in LINKIN function. For example, our proteomic studies indicated that RUVB proteins
bind the LINKIN intracellular domain and knocking down RUVB-1 or RUVB-2 lead to the same linker cell adhesion defect as does knockdown of LINKIN.

**Organizing biological information.** We have a number of projects that seek to organize biological information to enhance research speed and allow comparative genomic studies. We are involved in **WormBase**, which organizes information about *C. elegans* and other nematodes (collaboration with Lincoln Stein at the Ontario Institute for Cancer Research and Kevin Howe at the European Bioinformatics Institute); the **Gene Ontology Consortium**, which organizes information about gene product function in all organisms using the GO ontologies (Collaboration with Paul Thomas (USC), Mike Cherry (Stanford), Judy Blake (Jackson Labs) and Chris Mungall (LBNL); the **Alliance of Genome Resources**, which is an umbrella organization that is harmonizing information for the GO, WormBase, FlyBase, mouse, rat, budding yeast and zebrafish. As part of these efforts we developed a single sentence level search that allows efficient text-mining (**Textpresso**), a gene function predictor (**GeneOrienteer**), and artificial intelligence applications that summarize information in ontology graphs (**SoBA**) and writes human readable text summaries of gene function (concise descriptions for the Alliance). Our experience with these information resources made us realize that we need to make scientific publication knowledge-base friendly – with authors describing their experiments with controlled vocabularies – and to capture the ~50% of experimental results that are not now reported, we founded **micropublication.org**, which publishes single experiment, peer-reviewed articles. By having complete control of the publication process, we are in a position to experiment with some aspects of scholarly communication.

**PUBLICATIONS**

**2019**


2018


Assistant Professor of Computational Biology
Matthew Thomson

Graduate Students
Tyler Ross

Research and Laboratory Staff
Sisi Chen
Jeff Park
Paul Rivaud

Undergraduates
Audrey Huang

Non Degree Student
Graham Heimberg

Financial Support
Beckman Institute
National Institutes of Health (NIH)
Rosen Bioengineering Center Pilot Research

The Thomson Lab is applying quantitative experimental and modeling approaches to gain programmatic control over cellular differentiation. He is developing mathematical models to ask how cellular regulatory networks generate the vast diversity of cell-types that exists in the human body. He is applying models to engineer and rewire cellular physiology and to synthesize new types of cells that do not exist in nature. He is also developing simplified cellular systems in which physical models can be applied to control the geometry and morphology of different cell types. He uses a combination of approaches including mathematical modeling, machine learning, statistical analysis of high-throughput gene expression data, and single cell RNA sequencing experiments. Recent accomplishments include: Engineering an all-optical differentiation system in which he could optically-deliver pulsed neural differentiation inputs to embryonic stem cells; creating new computational tools for deriving cell state trajectories from single cell RNA-Seq data; and developing a stochastic modeling framework for analyzing principles that enable robust self-organization of the mammary gland.

PUBLICATIONS
2017


2016


Heimberg, Graham and Bhatnagar, Rajat and El-Samad, Hana and Thomson, Matt (2016) Low Dimensionality in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs from Shallow Sequencing. Cell Systems, 2 (4). pp. 239-250. ISSN 2405-4712. PMCID PMC4856162. Download


Professor of Biology; Tianqiao and Chrissy Chen Center for Systems Neuroscience Leadership Chair; Investigator, Howard Hughes Medical Institute; Director, Center for Systems Neuroscience
Doris Y. Tsao

Postdoctoral Scholars
Pinglei Bao, Tomo Sato, Francisco Luongo, Lulu Liu, Liang She, Joseph Wekselblatt, Erin Koch, Satya Rungta

CNS Graduate Student
Janis Hesse

Graduate Students
Francesco Lanfranchi, Jialing Lu, Yuelin Shi, Varun Wadia

Undergraduate Students
Gefei Dang, Nathaniel Smith

Research and Laboratory Staff
Jessa Alexander

Administrative Assistant
Abriana Sustaita

Financial Support
HHMI
NIH
DARPA
HSFP
Simons Foundation
Kavli foundation

Awards
Alden Spencer Award, Columbia University

Images from left to right: Professor Doris Tsao
Face cell: Responses of a face-selective neuron recorded from the middle face patches to 16 real faces, 80 non-face objects, and 432 part intensity stimuli consisting of 12 face regions varying in brightness. The cell has strong selectivity for particular contrast relationships, and this could explain how the cell detects faces.

Face patches: An inflated left hemisphere of the macaque brain showing locations of the six temporal lobe face patches, which each respond significantly more strongly to faces than to non-face objects. A major goal of our lab is to map each of these patches.
NEURAL MECHANISMS FOR VISUAL PERCEPTION
The central interest of the Tsao lab is in understanding the neural mechanisms underlying vision. We seek to understand how visual objects are represented in the brain, and how these representations are used to guide behavior. Our lab is investigating mechanisms at multiple stages in the visual hierarchy, from early processes for segmenting visual input into discrete objects, to mid- and high-level perceptual processes for assigning meaningful identity to specific objects, to processes by which these perceptual representations govern behavior. Techniques used include: electrophysiology, fMRI, electrical microstimulation, optogenetics, anatomical tracing, psychophysics, and mathematical modeling. We conduct experiments in both macaque monkeys, taking advantage of the remarkable similarity between the human and macaque visual systems, and rodents, taking advantage of the large arsenal of neural circuit dissection tools available in mice.

PUBLICATIONS

2018


Flytzanis, Nicholas and Goeden, Nicholas and Cho, Jouanhong and Kahan, Anat and Luongo, Francisco and Tsao, Doris and Deverman, Benjamin E. and Gradinaru, Viviana (2018) Engineering Cell Type Specific Delivery Vectors for Noninvasive Modulation of Brain Circuits and Behaviors. Molecular Therapy, 26 (5). p. 304. ISSN 1525-0016. Download <Download>

2017


Assistant Professor of Biology and Biological Engineering
Professor David Van Valen

Software Engineers
William Graf, Tom Dougherty

Lab Manager
Edward Pao

Postdoctoral Scholar
Erick Moen, Uriah Israel

Graduate Students
Dylan Bannon, Morgan Schwartz, Emily Laubscher

Undergraduate Students
Jonathan Soro

Research Technician
Geneva Miller

Administrative Staff
Abriana Sustaita

Financial Support
Shurl and Kay Curci Foundation
Rita Allen Foundation
Division of Biology and Bioengineering at Caltech
Research

We study how living systems and their respective viruses encode and decode information about their internal state and their environment. To do so, we combine ideas from cell biology and physics with recent advances in imaging, machine learning, and genomics to make novel measurements.

Deep learning for single-cell biology

One of the major computational challenges of analyzing modern imaging experiments is image segmentation that is determining which parts of a microscope image correspond to which individual cell. Our prior work has demonstrated that deep learning is a natural solution for this problem. We are currently developing the next generation of deep learning-enabled software that can analyze dynamic data from live-cell imaging experiments as well as multi-dimensional data from spatial genomics experiments.

Integrated measurements

Mammalian cells use dynamics to expand the information encoding capacity of their signaling networks, but how these dynamics are decoded into patterns of gene expression is less clear. A major advance has led to a method to measure signaling dynamics and genome wide gene expression profiles in the same individual cell. We are working to merge live-cell imaging and spatial genomics data to quantify information transmission in signaling networks involved in the anti-viral response.

Host-virus interactions

How do viruses access information about their host cell’s environment and internal state? How does this information flow to key decision points in the viral lifecycle? We are working to answer this question for temperate bacteriophage using functional genomics and high-throughput single-cell imaging.

Publications

Single-cell metabolic profiling of human cytotoxic T cells
*Nature Biotechnology (2020).*

DeepCell Kiosk: Scaling deep learning-enabled cellular image analysis with Kubernetes
*D Bannon, E Moen, M Schwartz, E Borba, T Kudo, N Greenwald, V Vijayakumar, B Chang, E Pao, E Osterman, W Graf, and D Van Valen*
*bioRxiv 10.1101/505032v4*
Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning
bioRxiv 10.1101/803205v2

Deep learning for cellular image analysis
E Moen, D Bannon, T Kudo, W Graf, M Covert, and D Van Valen

A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging
L Keren, M Bosse, D Marquez, R Angoshtari, S Jain, S Varma, S Yang, A Kurian, D Van Valen, R West, S Bendall, and M Angelo

Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of NF-κB Activation
K Lane*, D Van Valen*, M DeFelice, D Macklin, T Kudo, A Jaimovich, A Carr, T Meyer, D Pe’er, S Boutet, and M Covert

Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments
D Van Valen, T Kudo, K Lane, D Macklin, N Quach, M DeFelice, I Maayan, Yu Tanouchi, E Ashley, and M Covert
PLOS Computational Biology 12 (11), 1-24 (2016).

A Single-Molecule Hershey Chase Experiment
Current Biology 22 (14), 1339-1343 (2012).

Ion-dependent dynamics of DNA ejections for bacteriophage λ
D Wu*, D Van Valen*, Q Hu, and R Phillips
Biophysical journal 99 (4), 1101-1109 (2010).

Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins
D Van Valen, M Haataja, and R Phillips
Biophysical journal 96 (4), 1275-1292.
Smits Professor of Cell Biology
Alexander Varshavsky

Research Assistants
Ju-Yeon Hyun, Elena Udartseva

Staff Scientists
Xia Wu

Postdoctoral Scholars
Stanley Chen, Artem Melnykov, Jang-Hyun Oh, Ignat Printsev, Tri Vu

Financial Support
Howard and Gwen Laurie Smits Professorship in Cell Biology
National Institutes of Health

Click here to download the complete 2016 CV of Dr. Varshavsky

Click here to download Dr. Varshavsky's 2006 interview to Dr. I. Hargittai (“Candid Science”, Imperial College Press, 2006)

PROFESSIONAL AWARDS AND HONORS

Honorary Memberships:
Fellow, American Academy of Arts and Sciences, 1987.
Member, National Academy of Sciences, 1995.
Fellow, American Academy of Microbiology, 2000.
Member, American Philosophical Society, 2001.
Fellow, American Association for Advancement of Science, 2002.
Foreign Member, European Academy of Sciences (Academia Europaea), 2005.

Awards:
Merit Award, National Institutes of Health, 1998.
Novartis-Drew Award in Biomedical Science, Novartis, Inc. and Drew University, 1998.
Gairdner International Award, Gairdner Foundation, Canada, 1999.
Lasker Award in Basic Medical Research, Albert and Mary Lasker Foundation, 2000.
Hoppe-Seyler Award, Society for Biochemistry and Molecular Biology, Germany, 2000.
Max Planck Award, Germany, 2001.
Merck Award, American Society for Biochemistry and Molecular Biology, 2001.
Wolf Prize in Medicine, Wolf Foundation, Israel, 2001.
Stein and Moore Award, Protein Society, 2005.
March of Dimes Prize in Developmental Biology, March of Dimes Foundation, 2006.
Weinstein Distinguished Award, American Association for Cancer Research, 2007.
Schleiden Medal, German Academy of Sciences (Leopoldina), 2007.
Vilcek Prize in Biomedical Research, Vilcek Foundation, 2010.
BBVA Foundation Award in Biomedicine, BBVA Foundation, Spain, 2011.
Otto Warburg Prize, Society for Biochemistry and Molecular Biology, Germany, 2012.
Breakthrough Prize in Life Sciences, Breakthrough Foundation, 2014.
Albany Prize in Medicine and Biomedical Research, Albany Medical Center, Albany, NY, 2014.

The Ubiquitin System and the N-End Rule Pathway

Our main subject is the ubiquitin-proteasome system. The field of ubiquitin and regulated protein degradation was created in the 1980s, largely through the complementary discoveries by the laboratory of A. Hershko (Technion, Israel) and by my laboratory, then at MIT. The important mechanistic discovery, in 1978-1985, by Hershko and coworkers revealed ubiquitin-mediated proteolysis and E1-E3 enzymes of ubiquitin conjugation in vitro (in cell-free settings), while the complementary studies by our laboratory, in 1982-1990, discovered the biological fundamentals of the ubiquitin system, including its first physiological functions and the first degradation signals in short-lived proteins.

Our findings in the 1980s comprised the discovery of a major role of ubiquitin conjugation in the bulk protein degradation in living cells; the discovery of the first degradation signals (termed degrons) in short-lived proteins and the multi-determinant nature of these signals; the discovery of the first specific pathways of the ubiquitin system, including the N-end rule pathway and the ubiquitin-fusion-degradation (UFD) pathway; the discovery of subunit selectivity of protein degradation (a fundamental capability of the ubiquitin system that allows subunit-selective protein remodeling); the discovery of the first non-proteolytic function of ubiquitin (its role as a cotranslational chaperone in the biogenesis of ribosomes); and the first specific biological functions of the ubiquitin system, including its major roles in the cell cycle progression, in stress responses, in protein synthesis, in DNA repair, in chromosome
cohesion/segregation, and in transcriptional regulation. This set of insights included the discovery of the first ubiquitin-conjugating (E2) enzymes with specific physiological functions, in the cell cycle (CDC34) and DNA repair (RAD6). These advances initiated the understanding of the massive, multilevel involvement of the ubiquitin system in the regulation of the cell cycle and DNA damage responses.

At that time (the 1980s), we also discovered the first specific substrate-linked polyubiquitin chains and their necessity for proteolysis; the first genes encoding ubiquitin precursors (linear polyubiquitin and ubiquitin fusions to specific ribosomal proteins); the first physiological substrate of the ubiquitin system (the MATα2 repressor); and the first specific E3 ubiquitin ligase, termed UBR1, which was identified, cloned and analyzed in 1990. The latter advance opened up a particularly large field, because the mammalian genome turned out to encode nearly 1,000 distinct E3s. The targeting of many distinct degrons in cellular proteins by this immense diversity of E3 ubiquitin ligases underlies the unprecedented functional reach of the ubiquitin system.

Other (earlier) contributions by our laboratory include the discovery of the first nucleosome-depleted (nuclease-hypersensitive) sites in chromosomes (in 1978-79), and the first chromosome cohesion/segregation pathway, via the topoisomerase 2-mediated decatenation of multicatenated (multiply intertwined) sister chromatids (in 1980-81).

We also developed several methods in biochemistry and genetics, including the ubiquitin fusion technique (in 1986); the chromatin immunoprecipitation assay (ChIP, in 1988; it was called ChIP by later users of this technique); a temperature-sensitive (ts) degron as a new way to make ts mutants (in 1994); the split-ubiquitin assay for in vivo protein interactions (in 1994); the ubiquitin translocation assay; the ubiquitin sandwich assay for detecting and measuring cotranslational proteolysis (in 2000); the subunit decoy technique (2013), and other new methods as well.

By the end of the 1980s, our studies had revealed the major biological functions of the ubiquitin system as well as the basis for its specificity, i.e., the first degradation signals in short-lived proteins. The resulting discovery of the physiological regulation by intracellular protein degradation has transformed the understanding of biological circuits, as it became clear that control through regulated protein degradation rivals, and often surpasses in significance the classical regulation through transcription and translation. Just how strikingly broad and elaborate ubiquitin functions are was understood more systematically and in great detail over the next two decades, through studies by many laboratories that began entering this field in the 1990s, an expansion that continues to the present day.
Recent Research

Our current work at Caltech continues to focus on the ubiquitin system, with an emphasis on the N-end rule pathway. This pathway is a set of intracellular proteolytic systems whose unifying feature is the ability to recognize and polyubiquitylate proteins containing N-terminal (Nt) degradation signals called N-degrons, thereby causing the processive degradation of these proteins by the proteasome (Figure 1). Recognition components of the N-end rule pathway are called N-recognins. In eukaryotes, N-recognins are E3 ubiquitin (Ub) ligases that can target N-degrons. Some N-recognins contain several substrate-binding sites, and thereby can recognize (bind to) not only N-degrons but also specific internal (non-N-terminal) degradation signals. The main determinant of a protein’s N-degron is either an unmodified or chemically modified N-terminal residue. Another determinant of an N-degron is an internal Lys residue(s). It functions as a site of protein’s polyubiquitylation, is often engaged stochastically (in competition with other “eligible” lysines), and tends to be located in a conformationally disordered region. Bacteria also contain the N-end rule pathway, but Ub-independent versions of it.

Regulated degradation of proteins and their natural fragments by the N-end rule pathway has been shown to mediate a strikingly broad range of biological functions, including the sensing of heme, nitric
oxide (NO), oxygen, and short peptides; the control, through subunit-selective degradation, of the input stoichiometries of subunits in oligomeric protein complexes; the elimination of misfolded and otherwise abnormal proteins; the degradation of specific proteins after their translocation to the cytosol from membrane-enclosed compartments such as mitochondria; the regulation of apoptosis and repression of neurodegeneration; the regulation of DNA repair, transcription, replication, and chromosome cohesion/segregation; the regulation of G proteins, cytoskeletal proteins, autophagy, peptide import, meiosis, immunity, circadian rhythms, fat metabolism, cell migration, cardiovascular development, spermatogenesis, and neurogenesis; the functioning of adult organs, including the brain, muscle, testis, and pancreas; and the regulation of leaf and shoot development, leaf senescence, oxygen/NO sensing, and many other processes in plants.

In eukaryotes, the N-end rule pathway consists of two branches. One branch, called the Ac/N-end rule pathway, targets proteins for degradation through their N\(^\alpha\)-terminally acetylated (Nt-acetylated) residues (Figure 1B). Degradation signals and E3 Ub ligases of the Ac/N-end rule pathway are called Ac/N-degrons and Ac/N-recognins, respectively. Nt-acetylation of cellular proteins is apparently irreversible, in contrast to cycles of acetylation-deacetylation of proteins’ internal Lys residues. About 90% of human proteins are cotranslationally Nt-acetylated by ribosome-associated Nt-acetylases. Posttranslational Nt-acetylation takes place as well. Ac/N-degrons are present in many, possibly most, Nt-acetylated proteins. Natural Ac/N-degrons are regulated through their reversible shielding in cognate protein complexes.

The pathway’s other branch, called the Arg/N-end rule pathway, targets specific unacetylated N-terminal residues (Figure 1A). The “primary” destabilizing N-terminal residues Arg, Lys, His, Leu, Phe, Tyr, Trp, and Ile are directly recognized by N-recognins. The unacetylated N-terminal Met, if it is followed by a bulky hydrophobic (Φ) residue, also acts as a primary destabilizing residue. In contrast, the unacetylated N-terminal Asn, Gln, Asp, and Glu (as well as Cys, under some metabolic conditions) are destabilizing owing to their preliminary enzymatic modifications, which include N-terminal deamidation (Nt-deamidation) of Asn and Gln (by Nt-amidases Ntan1 and Ntaq1), and Nt-arginylation of Asp, Glu and oxidized Cys, by the arginyltransferase (R-Transferase) Ate1. In the yeast \textit{Saccharomyces cerevisiae}, the Arg/N-end rule pathway is mediated by the Ubr1 N-recognin, a 225 kDa RING-type E3 Ub ligase and a part of the multisubunit targeting complex comprising the Ubr1-Rad6 and Ufd4-Ubc4/5 E2-E3 holoenzymes. In multicellular eukaryotes, several E3 Ub ligases, including Ubr1, function as N-recognins of the Arg/N-end rule pathway (Figure 1A).

Studies of the N-end rule pathway, largely in the yeast \textit{S. cerevisiae} and in mammals, continues to be a major focus of our work.

Cited below are selected publications since 2010.

(My complete CV, which can be downloaded by clicking a hyperlink above, cites all publications by our laboratory.)

**Selected Publications (2010-present):**


Assistant Professor of Biology; Investigator Heritage Medical Research Institute

Postdoctoral Scholars
Tino Pleiner and Alison Inglis

Staff Scientist
Kurt Januszyk

Graduate Students
Angel Galvez Merchan, Giovani Pinton Tomaleri, Katherine Page, Taylor Stevens

Research Technicians
Akshaye Pal

Lab Manager
Robert Oania

Administrative Staff
Katie Fisher

Financial Support
NIH Director’s New Innovator Award
Betty and Gordon Moore Foundation
Shurl and Kay Curci Foundation
Searle Family Trust
Pew-Stewart Trust
Heritage Medical Research Institute
Rosen Bioengineering Center

PROTEIN BIOGENESIS AND QUALITY CONTROL

Our lab uses a combination of structural and functional techniques, including cryo-electron microscopy and protein biochemistry, to understand i) the molecular mechanism of protein biogenesis and ii) how proteins and mRNAs that fail at any step during this maturation process are recognized and degraded.

In all living organisms, protein synthesis is carried out by the large macromolecular machine known as the ribosome. Understanding the molecular basis for how the ribosome translates an mRNA message into an amino acid sequence is one of the classic problems in biology. Several
decades of structural and functional studies have now resulted in a detailed chemical understanding of many fundamental aspects of translation. However it has become increasingly clear that the ribosome serves not only as a hub for protein synthesis, but also as a scaffold for association of factors required for the maturation or quality control of the mRNA message and nascent polypeptide. Defects in these processes underlie a variety of human diseases including cystic fibrosis, forms of neurodegeneration, and many cancers. Yet far less is known about how these exogenous factors cooperate with the biosynthetic machinery to carry out their diverse and essential downstream functions.

Membrane protein biogenesis

One class of proteins that is particularly dependent on exogenous factors for their biogenesis are secreted and integral membrane proteins. This family of proteins make up ~30% of the eukaryotic proteome, and is essential for a range of cellular functions including intracellular trafficking, cell signaling, and the transport of molecules across the lipid bilayer. Defects in membrane protein maturation underlie numerous protein misfolding diseases, and more than half of all therapeutic drugs bind a membrane protein target. The essential roles of these proteins, as well as the consequences of their failed maturation, underscore the physiologic importance of understanding the molecular details of membrane protein biogenesis.

Both secreted and integral membrane proteins contain one or more hydrophobic segments that must be inserted into the lipid bilayer in the correct orientation for folding and function of the final protein. These assembly steps occur at the ER, where the majority of proteins are cotranslationally translocated or inserted by the universally conserved Sec61 channel.

However, the Sec61 channel alone is sufficient for translocation of only a small number of model substrates. Indeed the majority of secreted and integral membrane proteins require additional factors for their modification, insertion, and folding at the ER. Despite the critical role of these proteins, very little is known about their overall architecture, interaction with the nascent polypeptide and signal sequence, or in some cases, even their role in translocation.

Our lab aims to use biochemical strategies in conjunction with cryo-electron microscopy to understand how the enormous diversity of secreted and multi-pass membrane proteins are assembled in the ER.

mRNA and protein quality control

During the multi-step process of converting genetic information into protein, a percentage of mRNAs and nascent polypeptides will fail at each step of maturation. In order to maintain proteome fidelity, several redundant pathways have evolved to ensure quality control at the DNA, RNA, and protein levels. Efficient identification of these aberrant gene products is achieved by tight-coupling between surveillance and biosynthetic processes. For example, aberrant mRNAs, resulting from genetic mutations, splicing errors, or degradation, are selectively identified and degraded during translation by the ribosome.
In many cases, the resulting nascent chain, which may code for a truncated or mutant protein product, is concomitantly degraded. Though many of the factors involved in these ubiquitous and conserved quality control pathways have been identified, mechanistic details of their interactions with the ribosome, the aberrant mRNA, and the complex degradation machinery remains poorly understood.

Similarly, membrane proteins that fail during biosynthesis pose a particular challenge to the cell, as their hydrophobic sequences must be shielded from the aqueous cytosol until insertion and folding of the final protein product. As a result, mislocalized membrane proteins, resulting from failures in membrane targeting, insertion, or assembly, must be efficiently identified and degraded to prevent aggregation and spurious off-target interactions.

Our lab utilizes a combination of functional and structural techniques to understand how mRNAs and nascent polypeptides that fail during any step of their biosynthesis are recognized and degraded in order to maintain cellular homeostasis and prevent disease.

Honors:
Awarded the NIH Director’s New Innovator Award (DP2)

PUBLICATIONS

Preprints


Peer-reviewed

2020

Elucidating interactions between behavior-generating circuits using functional and anatomical connectomics

How brain activity can lead to complex and flexible behavioral outputs has fascinated neuroscientists and philosophers alike. There is mounting evidence that complex behaviors result from the activity of a multitude of simpler (sometimes competing) circuits. Yet, our understanding of even the simplest circuits remains very incomplete, in part because available technology has limited researchers to studying only one or a few aspects of a circuit at a time. We stand at the cusp of a revolution in recording and imaging technology that will ultimately allow us to investigate comprehensively how the fundamental biological building blocks of the human brain are constructed and fit together. Even now, the limitations mentioned no longer apply to certain less complex, more experimentally approachable nervous systems. We use the relatively simple nervous system of the European medicinal leech to develop insights about how the activity of all the cells in a nervous system together produce individual behaviors from overlapping functional networks, a phenomenon that—at a much larger scale and undoubtedly with many complexities added—is also crucial to human brain function.

Within this project, we perform three types of experiments:

- Record the activity of all the neurons in a ganglion—the unit of activity in this animal’s brain—using high-resolution voltage-sensitive dye imaging, as it performs four different behaviors—swimming, crawling, local bending, and shortening;
- Use electron microscopy to reconstruct the full connectivity pattern—the “connectome”—of the same ganglion that was imaged;
- Use electrophysiology to add functional significance to the anatomical connectome.
Multisensory integration

Obtaining information from the environment to guide behavior is one of the most fundamental functions of nervous systems. Most animals combine cues from multiple sensory modalities to gain information about their environments. When individual cues are not 100% reliable, combining cues greatly aids decision making and it makes behavior more robust under variable circumstances. The medicinal leech *Hirudo verbana* can use both visual and mechanical cues to find its prey. When cues from both modalities are available, leeches must either combine the two modalities, or decide which one is more reliable and selectively ignore the other. We study how their nervous system solves this challenge and produces a coherent decision for subsequent motion.

Visual processing in the medicinal leech

A crucial step toward the overall goal of the lab is to improve our understanding of the neural circuits involved in visual processing. The entry point of the visual system of the leech consists of five pairs of primitive eyes located on the head, and seven pairs of photosensitive sensilla located around the body circumference at each of its 21 midbody segments. Neither eyes nor sensilla have image forming optics. The projections of the eyes and sensilla are known, and several specific cells in the central nervous system have been identified as receiving visual input, but a systematic exploration of the visual pathways either in the headbrain or in the segmental ganglia has not been undertaken. Yet, such an endeavor is eminently feasible in the leech, because there are only about 400 cells in each ganglion, and their anatomy and functions are strongly stereotyped. One very attractive question is whether and how the leech utilizes its 14x21 sensillar array to form a basic image of the visual world.

Publications


Arbabi, Ehsan and Li, Jiaqi and Hutchins, Romanus J. and Kamali, Seyedeh Mahsa and Arbabi, Amir and Horie, Yu and Van Dorpe, Pol and Gradinaru, Viviana and


Assistant Professor of Biology and Biological Engineering
Professor Kaihang Wang

Postdoctoral Scholar
Russell P. Swift

Graduate Students
Charles J. Sanfiorenzo, Bryan Gerber

Research Technician
Hannah Yang

Administrative Staff
Kara Murphy

Financial Support
National Science Foundation

SYNTHETIC GENOMES, LIFE FORMS and FUNCTIONS
The genome serves as the blueprint of every organism on earth. A rigorous understanding of how genomic information encodes a particular life form, and the ability to design and synthesize new genomes *de novo*, will drastically advance our understanding of life and improve our ability to engineer organisms.

Our lab aims to advance this goal by inventing novel concepts and developing unique methods to ‘write’ the sequences of entire genomes within living cells. We have also been exploring applications of such techniques to engineer synthetic organisms with expanded genetic codes and/or new capabilities, and to ultimately create novel life forms with functions beyond the limits of nature. Our proposed steps towards the creation of such synthetic life forms are each significant and substantial; and scalable and modular with other steps in the process.

*De novo* genome synthesis
I led the effort in the design and *de novo* synthesis of a fully functional 4-mb recoded genome (named Syn61) in *E. coli* \(^1,2\). To enable this, I invented the Replicon Excision Enhanced
Recombination (REXER) method to replace a large fraction of the wildtype genome one section at a time\(^1\). In a single integrated step, REXER cuts open the old genomic sequence using CRISPR/Cas9 activity and rejoins the double strand breaks (DSB) with 50-bp homology arms, which leads to the replacement of the wildtype genomic fragment with synthetic DNA. Clones with the correctly integrated synthetic DNA are selected using combinations of positive and negative selection markers\(^1\). As a result, REXER enables highly efficient and accurate one-step \textit{in vivo} genome integration of 100-kb or larger synthetic DNA fragments\(^1\). The efficiency of REXER is independent of the length of DNA to be integrated\(^1\). Thus, the size capacity of each REXER step is only restricted by the ability to deliver synthetic DNA into \textit{E. coli} cells (currently at \(~100\) kb for electroporation). Iterations of REXER through the Genome Stepwise Interchange Synthesis (GENESIS) strategy allow for the stepwise replacement of the entire \textit{E. coli} genome with synthetic DNA\(^1\). The resulting Syn61 synthetic genome follows an artificially redefined decoding rule fundamentally different from all terrestrial lifeforms (61 triplet codons in Syn61 vs 64 in all natural cells)\(^2\).

**Genome fission and chromosomal fusion**

To provide a set of precise, rapid, megabase-scale genome engineering operations for creating diverse synthetic genomes, I invented the “genome fission” and “chromosomal fusion” technologies in \textit{E. coli}\(^3\). In the genome fission operation, the single circular wildtype genome is transiently split into two linear genomic fragments at defined CRISPR/Cas9 cut sites. Two linkers, linker 1 containing the \textit{luxABCDE} operon, while linker 2 containing the \textit{CmR} (positive selection) – \textit{sacB} (negative selection) double selection cassette and Bacterial Artificial Chromosome (BAC) replication machinery/origin, are simultaneously excised from the provided “fission BAC”. Guided by overlapping homology regions of \(~50\) bp, the linear genomic fragments are joined with these complementary linker sequences (fragment 1 joined with linker 1, and fragment 2 with linker 2) to form two circular synthetic chromosomes (chromosome 1 and chromosome 2) by homologous recombination. One of the synthetic chromosomes is replicated from the original genomic \textit{oriC} origin while the other is replicated from the synthetic BAC origin\(^3\). The fission reaction is driven by the irreversible loss of two copies of a negative selection marker (\textit{rpsL}) from the system.

Following the genome fission reaction, the two synthetic chromosomes of the split genome can be restored back into the original singular circular genomic format by the chromosomal fusion operation. Similar to the fission reaction, the fusion reaction is also enabled by cutting open the two synthetic chromosomes using CRISPR/Cas9 and rejoining them into a single circular genome by homologous recombination; this is driven by the irreversible loss of two copies of negative selection marker (\textit{pheSmut}, one copy per synthetic chromosome) through the process. The two chromosomes can be programmed to fuse in different positions and orientations to generate genome translocations and/or inversions\(^3\). I further combined genome fission, chromosome transplantation via conjugation, and chromosomal fusion to assemble genomic regions from different \textit{E. coli} strains into a single genome\(^3\), a key step in the convergent synthesis of genomes from diverse progenitors.
Our lab utilizes a combination of technologies to probe the limit of synthetic genome design and functionality. We plan to initially test and push the perceived boundaries of life using *Escherichia coli* as the model system, and then expand into broader and higher organisms.

**Publications** (Joint first-author is indicated by *, and joint correspondence-author by ° in the publications.)


RESEARCH VISION FOR THE DNA AND NATURAL ALGORITHMS GROUP

John Hopfield claimed that there are three great scientific mysteries of the natural world: How can life arise from a mixture of inert molecules? How does the body develop from a single cell? And how does the mind arise from a collection of simple neurons?

The notion of an algorithm is central to all these questions: a small amount of information directs the creation and organization of structure and behavior. Indeed, the most basic defining character of life that makes evolution possible—the ability of a system to reproduce by making a copy of itself—is essentially an information processing task, as was foreseen by John von Neumann in the 1950's. Development, in turn, is the process by which a concise genetic specification unfolds into the mature organism, according to the logic of the developmental program; the question of how to concisely specify a complex object is fundamentally a question about algorithms. Among the wonderful machines produced by development is the brain, the world's most sophisticated and powerful computer. Evolution has explored this space of natural programs—information in DNA encoding enzymes and biochemical networks, body plans, and brain architectures—to create the remarkable diversity of forms and functions that we call life.

Is there any substance to this metaphor relating algorithms and the mechanics of life? Molecular biology has been painstakingly elucidating the inner workings of the cell, and systems biology is beginning to explore how cellular decisions and signal processing occurs in particular biological systems. In contrast, over the past decades artificial life researchers have explored the space of possible “living” systems, most often using abstract computer-simulated models. The connection would be
stronger and more insightful if we could explore algorithms implemented using the same molecules and biochemistry that occur in biological organisms. But whereas we have a rich and solid understanding of algorithms in the pristine worlds of mathematics and computer science, there are relatively few models of computation based on realistic molecular biochemistry—and even fewer implementations. This state of affairs limits our ability to coherently apply algorithmic concepts to the major scientific mysteries of the natural world.

Research in the DNA and Natural Algorithms group is dedicated to understanding biomolecular computation, primarily using a synthetic approach. That is, rather than examining in detail what occurs in nature (biological organisms), we take the engineering approach of asking, “What can we build?” As is the case in computer science, the answer we are seeking comes not in the form of a list, but rather in the form of a programming language and a compiler: a set of logical primitives and methods for combining them into systems that describe dynamical behavior, and a means to implement the systems using real molecules. Furthermore, by formalizing specific types of biomolecular computation, we can ask and answer questions of the fundamental limits of computation in these systems.

As has been the case with silicon-based electronic computers, it can be advantageous to restrict oneself to a very simple set of primitives, and to ignore the many more subtle, more sophisticated possibilities that exist. Therefore, we focus our attention almost exclusively on DNA. Work by Ned Seeman on DNA nanotechnology, by Len Adleman on DNA-based computing, by Bernie Yurke on DNA nanomachines, and by many others, has established the remarkable fact that DNA is capable of and can be rationally designed to perform a wide variety of tasks, including serving as geometrical structures, processing information, and acting as molecular switches, catalysts, and motors. These are our building blocks; are they sufficient for constructing arbitrarily complex and sophisticated molecular machines?

**PUBLICATIONS**

**2020**


**2019**


Johnson, Robert and Dong, Qing and Winfree, Erik (2019) Verifying chemical reaction network implementations: a bisimulation approach. Theoretical Computer Science 765. pp. 3-46. [Download](#)

2018


2017


2015


A substantial biological challenge is to understand the regulation and execution of developmental decisions that lead from multipotential, undifferentiated precursor cells to their specialized differential products. In the Wold lab at the California Institute of Technology, we are interested in several interrelated aspects of this problem, and we also work to develop new methods for studying it. The particular cell lineage problem we study begins with the specification of mesoderm in early development and continues to the final differentiation of skeletal muscle or cardiac muscle in the fully developed animal. To study this process we use the mouse as our experimental system. Molecular-level analyses use cell culture model systems and transgenic mice. These projects include studies of in vitro and in vivo protein-DNA interactions and of factors that amplify or suppress expression activity. Computational approaches involve the development of algorithms for use in large-scale gene expression analysis and the construction of a simulator framework for regulation in muscle development.
Professor of Electrical Engineering, Bioengineering and Medical Engineering
Changhuei Yang

Postdoctoral Fellows and Scholars
Baptiste Blochet

Graduate Students
Ruizhi Cao, Michelle Cua (MedE), Mingshu Liang, Cheng Shen, Jian Xu

Lab Manager
Anne Sullivan

Grants Manager
Patama Taweesup

Lab Website

Financial Support
National Institutes of Health
Caltech Innovation Initiative (CI2) Program (Internal)
Amgen

CALTECH BIOPHOTONICS LABORATORY

The research of the Biophotonics Laboratory, led by Professor Changhuei Yang, is focused on the development of novel tools that combine optics and microfluidics to tackle diagnostic and measurement problems in biology and medicine. The major techniques that are under development in the laboratory include Fourier Ptychographic microscopy and time-reversal optical focusing.

The Fourier Ptychographic microscope represents a new way of tackling high-throughput digital pathology by transforming a physical optical problem to a computational problem. Through this reduction, we can push the performance of standard microscopes beyond their physical limitations. Our time-reversal optical focusing research aims to tackle the extreme turbidity of biological tissues through the use of optical time-reversal methods. This work can potentially enable incisionless laser surgery, high-resolution and deep-penetrating biochemical tissue imaging, optogenetic activation and more.
PUBLICATIONS

2020


Y. Liu*, R. Cao*, J. Xu, H. Ruan and C. Yang; Imaging through highly scattering human skulls with ultrasound-modulated optical tomography; Optics Letters 45, 2973-76 (2020). *These authors contributed equally to this wok. doi: 10.1364/ol.390920.

H. Ruan*, Y. Liu*, J. Xu, Y. Huang and C. Yang Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation; Nature Photonics (2020). *These authors contributed equally to this work. doi: 10.1038/s41566-020-0630-0.


2019


2018

M. Jang, Y. Horie, A. Shibukawa, J.H. Brake, Y. Liu, S.M. Kamali, A. Arbabi, H. Ruan, A. Faraon and C. Yang; Wavefront shaping with disorder-engineered metasurfaces; Nature Photonics 12, pp. 84-90 (2018). doi: 10.1038/s41566-017-0078-z.


2017


2016


J. Kim, B.M. Henley, C.H. Kim, H.A. Lester and C. Yang; **Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy**; Biomedical Optics Express, 7, pp. 3097-3110 (2016). doi: 10.1364/BOE.7.003097.


**2015**


C. Han, J. Huangfu, L.L. Lai, C. Yang; *A wide field-of-view scanning endoscope for whole anal canal imaging*. Biomedical Optics Express, 6 (2). pp. 607-614 (2015). ISSN 2156-7085.

**Bren Professor of Biology and Biological Engineering**
Magdalena Zernicka-Goetz

**Postdoctoral Fellows and Scholars**
Min Bao, Tongtong Cui, Clare Reynell, William Dempsey, Estefania Sanchez Vasquez, Berna Sozen, Dong-Yuan Chen

**Visiting Scientist**
Ying Zhang

**Graduate Student**
Victoria Jorgensen

**Administrative Staff**
Kara Murphy

**Lab Website**

**Financial Support**
Wellcome Trust, Open Philanthropy Foundation, Weston Havens Foundation, Curci Foundation, NIH

---

**Images from left to right:**
Professor Magdalena Zernicka-Goetz

Two embryos at the blastocyst stage, 5 days after fertilization.

Different color dyes mark various cell types in the blastocysts. Image collected in Magda Zernicka-Goetz lab by Berna Sozen and Wonder Science processed it to give a sense of seeing from inside the hollow embryo cavity. A baby-baby’s eye-view!

Human embryo, 5 days after fertilization. Image collected by Meng Zhu in Magda Zernicka-Goetz lab.

---

**AWARDS AND HONORS**

- NIH Director’s Pioneer Award, 2020
- Named as one of the worlds top 10 thinkers for the Covid-19 age by Prospect magazine, 2020
- Foreign Member of Polish Academy of Science, from 2017
- Foreign Member of Polish Academy of Arts and Sciences, from 2016
- Fellow of British Academy of Medical Science, from 2013
- Member of European Molecular Biology Organization, from 2007
- COGI and RBMO awards in recognition of lifetime contribution to Reproductive Medicine, 2017
- International Foundation IVI Award for the Best Basic Research in Reproductive Medicine, 2017
• Winner of the People's Vote for Scientific Breakthrough of the year 2016 by Science magazine
• Anne McLaren Memorial Lecture Award, International Society of Differentiation, 2008
• Young Investigator Award, EMBO, 2001
• Lister Institute of Preventive Medicine Senior Research Fellowship (1997-2002)
• Best Ph.D. thesis Award, Polish Ministry of Education, 1994
• Promising Young Scientist Prize, Foundation for Polish Science, 1993

SUMMARY OF RESEARCH / RESEARCH STATEMENT
In our group we study the principles of self-organization and cell fate specification in the natural embryos and synthetic mouse and human embryo models.

PUBLICATIONS

2020

Basement membrane remodelling regulates mouse embryogenesis.
Kyprianou C, Christodoulou N, Hamilton RS, Nahaboo W, Boomgaard DS, Amadei G, Migeotte I, Zernicka-Goetz M.

Developmental potential of aneuploid human embryos cultured beyond implantation.

Expression of SARS-CoV-2 receptor ACE2 and the protease TMPRSS2 suggests susceptibility of the human embryo in the first trimester.
Weatherbee BAT, Glover DM, Zernicka-Goetz M.

Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism.
Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M.

Living a Sweet Life: Glucose Instructs Cell Fate in the Mouse Embryo.
Zhu M, Zernicka-Goetz M.

Comparative analysis of human and mouse development: From zygote to pre-gastrulation.
Molè MA, Weberling A, Zernicka-Goetz M.
Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives.
Zhu M, Zernicka-Goetz M.

2019

Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid.

Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation.
Christodoulou N, Weberling A, Strathdee D, Anderson KI, Timpson P, Zernicka-Goetz M.

Self-organization of stem cells into embryos: A window on early mammalian development.
Shahbazi MN, Siggia ED, Zernicka-Goetz M.

Concerted cell divisions in embryonic visceral endoderm guide anterior visceral endoderm migration.
Antonica F, Orietti LC, Mort RL, Zernicka-Goetz M.

2018

CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development.
Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M.

Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation.

Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures.
Berna Sozen, Gianluca Amadei, Andy Cox, Ran Wang, Ellen Na, Sylwia Czukiewska, Lia Chappell, Thierry Voet, Geert Michel, Naihe Jing, David M. Glover & Magdalena Zernicka-Goetz.

Deconstructing and reconstructing the mouse and human early embryo.
Shahbazi MN, Zernicka-Goetz M.
*Nature Cell Biology.* 2018 Aug 08; 20, 878–887. doi: 10.1038/s41556-018-0144-x

In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells.
Harrison SE, Sozen B, Zernicka-Goetz M.
2017

Pluripotent state transitions coordinate morphogenesis in mouse and human embryos.

Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo.
Zhu M, Leung CY, Shahbazi MN, Zernicka-Goetz M.

Delayed APC/C activation extends the first mitosis of mouse embryos.
Ajduk A, Strauss B, Pines J, Zernicka-Goetz M.

The chromatin modifier Satb1 regulates cell fate through Fgf signalling in the early mouse embryo.
Goolam M, Zernicka-Goetz M.

Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.
Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M.

2016

Self-organization of the human embryo in the absence of maternal tissues.

Self-organization of the in vitro attached human embryo.
Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH.

Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.
Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, Voet T, Zernicka-Goetz M.

Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.

The Acquisition of Cell Fate in Mouse Development: How Do Cells First Become Heterogeneous?
Graham SJ, Zernicka-Goetz M.
The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo.

2015

Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse.

Polarity and cell division orientation in the cleavage embryo: from worm to human.
Ajduk A, Zernicka-Goetz M.

Mapping the journey from totipotency to lineage specification in the mouse embryo.
Leung CY, Zernicka-Goetz M.

Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo.

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes.

Cell death and morphogenesis during early mouse development: are they interconnected?
Bedzhov I, Zernicka-Goetz M.

2014

Jedrusik A, Cox A, Wicher K, Glover D, Zernicka-Goetz M.
Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition.

Graham SJ, Wicher KB, Jedrusik A, Guo G, Herath W, Robson P, Zernicka-Goetz M.
BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the
mouse embryo.

Bedzhov I, Leung CY, Bialecka M, Zernicka-Goetz M.
In vitro culture of mouse blastocysts beyond the implantation stages.

Ajduk A, Biswas Shivhare S, Zernicka-Goetz M.
The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo.

Bedzhov I, Zernicka-Goetz M
Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation.

Citrullination regulates pluripotency and histone H1 binding to chromatin.

2013

Coelho PA, Bury L, Sharif B, Riparbelli MG, Fu J, Callaini G, Glover DM, Zernicka-Goetz M
Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.

Morris SA, Graham SJL, Jedrusik A, Zernicka-Goetz M
The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos.
Open Biol. 2013 Nov 20; 3, 130104

Duan EK, Wang H, Zernicka-Goetz M
Introduction to the special issue "Molecular Players in Early Pregnancy".

Leung CY, Zernicka-Goetz M
Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms.

Skamagki M, Wicher KB, Jedrusik A, Ganguly S, Zernicka-Goetz M
Asymmetric Localization of Cdx2 mRNA during the First Cell-Fate Decision in Early Mouse Development.
Cell Rep. 2013 Feb 21; 3(2)

2012
Morris SA, Guo Y, Zernicka-Goetz M.
Developmental plasticity is bound by pluripotency and the fgf and wnt signaling pathways.

Morris SA, Zernicka-Goetz M.
Formation of distinct cell types in the mouse blastocyst.
Results Probl Cell Differ. 2012;55:203-17

Ajduk A, Zernicka-Goetz M.
Advances in embryo selection methods.
F1000 Biol Rep.. 2012;4:11

Dynamics of anterior-posterior axis formation in the developing mouse embryo.

2011

Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability.

Zernicka-Goetz M.
Proclaiming fate in the early mouse embryo.

2010

Sharif B, Na J, Lykke-Hartmann K, McLaughlin SH, Laue E, Glover DM, Zernicka-Goetz M.
The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes.

Zernicka-Goetz M, Huang S.
Stochasticity versus determinism in development: a false dichotomy?

Parfitt DE, Zernicka-Goetz M.
Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo.

Jedrusik A, Bruce AW, Tan MH, Leong DE, Skamagki M, Yao M, Zernicka-Goetz M.
Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the
mouse embryo.  
Dev Biol. 2010 Apr 27.

Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M.  
Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo.  

2009

Wu Q, Bruce AW, Jedrusik A, Ellis PD, Andrews RM, Langford CF, Glover DM, Zernicka-Goetz M.  
CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation.  

Zernicka-Goetz M, Morris SA, Bruce AW.  
Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo.  

Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M.  
Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst.  

2008

Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo.  

Lykke-Andersen K, Gilchrist MJ, Grabarek JB, Das P, Miska E, Zernicka-Goetz M.  
Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition.  

Soares ML, Torres-Padilla ME, Zernicka-Goetz M.  
Bone morphogenetic protein 4 signaling regulates development of the anterior visceral endoderm in the mouse embryo.  

Bischoff M, Parfitt DE, Zernicka-Goetz M.  
Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions.  

2007


2006


2005

Soares ML, Haraguchi S, Torres-Padilla ME, Kalmar T, Carpenter L, Bell G, Morrison A, Ring CJ, Clarke NJ, Glover DM, Zernicka-Goetz M.
Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi.

Zernicka-Goetz M.
Developmental cell biology: cleavage pattern and emerging asymmetry of the mouse embryo.

Moore CA, Zernicka-Goetz M.
PAR-1 and the microtubule-associated proteins CLASP2 and dynactin-p50 have specific localisation on mouse meiotic and first mitotic spindles.

Piotrowska-Nitsche K, Zernicka-Goetz M
Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo.

Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM, Zernicka-Goetz M.
The first cleavage of the mouse zygote predicts the blastocyst axis.

Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo.

Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M.
Four-cell stage mouse blastomeres have different developmental properties.

2004

Carpenter L, Zernicka-Goetz M.
Directing pluripotent cell differentiation using "diced RNA" in transient transfection.

Zernicka-Goetz M.
First cell fate decisions and spatial patterning in the early mouse embryo.
Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M.
The anterior-posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation.

Gray, D., Plusa, B., Piotrowska, K., Glover, D. M., Tom, B. and Zernicka-Goetz, M.
First cleavage of the mouse embryo responds to egg geometry that reflects the position of sperm entry.

Wang, Q.T., Piotrowska, K., Ciemerych, M.A., Milenkovic, L., Scott, M.P., Davis, R.W. and Zernicka-Goetz, M.
A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo.
Developmental Cell 2004 Jan: 6, 133-144.

2003

Grabarek JB, Zernicka-Goetz M.
RNA interference in mammalian systems--a practical approach.

Grabarek JB, Wianny F, Plusa B, Zernicka-Goetz M, Glover DM.
RNA interference by production of short hairpin dsRNA in ES cells, their differentiated derivatives, and in somatic cell lines.
Biotechniques. 2003 34:734-6, 739-44.

Zernicka-Goetz M.
Determining the first cleavage of the mouse zygote.

Developmental fate of embryonic germ cells (EGCs), in vivo and in vitro.

2002

Plusa B., Grabarek J.B., Piotrowska K., Glover D.M, Zernicka-Goetz M.
Site of the previous meiotic division defines cleavage orientation in the mouse embryo.

Piotrowska K, Zernicka-Goetz M.
Early patterning of the mouse embryo - contributions of sperm and egg.

Grabarek JB, Plusa B, Glover DM, Zernicka-Goetz M.
Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by
electroporation.
Genesis, 2002. 32:269-76.

Plusa B, Piotrowska K, Zernicka-Goetz M.
Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote.
Zernicka-Goetz M.

2001

Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development.

Piotrowska, K. and Zernicka-Goetz, M.
Role for sperm in spatial patterning of the early mouse embryo.

2000

Patterning of the embryo: the first spatial decisions in the life of a mouse.
Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M.

Zernicka-Goetz M, Pines J.
Use of Green Fluorescent Protein in mouse embryos.

Wianny, F and Zernicka-Goetz, M.
Specific interference with gene function by double stranded RNA in mouse.

Cierny M, Mesnard D, Zernicka-Goetz M.
Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are nonessential for development.

Zernicka-Goetz M.
Jumping the gun on mouse gene expression.

Grabarek J, Zernicka-Goetz M.
Progression of mouse oocytes from metaphase I to metaphase II is inhibited by fusion with G2 cells.
Zernicka-Goetz M, Pines J.
Cell lineage analysis. Applications of green fluorescent protein.

1999

Weber, R., Wianny, F., Evans, M.J., Pedersen, R., and Zernicka-Goetz, M.
Polarity of the mouse embryo is anticipated before implantation.

1998

Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and
spindle midzone during oocyte maturation.

Zernicka-Goetz M.
Fertile offspring derived from mammalian eggs lacking either animal or vegetal poles.

1997

Following cell fate in the living mouse embryo.

Zernicka-Goetz M, Verlhac MH, Geraud G, Kubiak JZ.
Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte
maturation.

1996

An indelible lineage marker for Xenopus using a mutated green fluorescent protein.

1995

Zernicka-Goetz M, Ciemerych MA, Kubiak JZ, Tarkowski AK, Maro B.
Cytostatic factor inactivation is induced by a calcium-dependent mechanism present until the second
cell cycle in fertilized but not in parthenogenetically activated mouse eggs.

1994
Zernicka-Goetz M.
Activation of embryonic genes during preimplantation rat development.

1993

Zernicka-Goetz M, Maro B.
Okadaic acid affects spindle organization in metaphase II-arrested rat oocytes.

Zernicka-Goetz M, Weber M, Maro B.
Full activation of the rat oocyte by protein synthesis inhibition requires protein phosphatase activity.

Zernicka-Goetz M, Kubiak JZ, Antony C, Maro B.
Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: a study by confocal laser scanning microscopy.

1991

Zernicka-Goetz M.
Spontaneous and induced activation of rat oocytes.
Professor of Biology
Kai Zinn, Ph.D.

Member of the Professional Staff
Kaushiki Menon

Postdoctoral Scholars
Namrata Bali, Hyung-Kook (Peter) Lee, Shuwa Xu, An Zhang,

Graduate Student
Michael Anaya

Technical Staff
Yelena Smirnova

Lab Manager
Violana Nesterova

Lab Website

Financial Support
NIH (NINDS)
NIH (NEI)
Amgen partnership (CBEA award)
McKnight Foundation for Neuroscience

Images from left to right:
Professor Kai Zinn
An array of neuromuscular junctions on muscles 6 and 7 in the third instar larva, visualized with anti-Futsch (green) and anti-eIF-4E (red). Cover image from Journal of Neuroscience, April 2009. Image by Kaushiki Menon and Violana Nesterova

RESEARCH SUMMARY

Most of our work is focused on the molecular and cellular mechanisms that determine the patterns of synaptic connectivity in the brain. The fruit fly *Drosophila* is our primary experimental system. *Drosophila* has unique advantages for the study of brain development because many of its neural circuits are ‘hard-wired’ by genetics. This makes it straightforward to study the contributions made by individual genes to brain wiring patterns. Although the anatomy of the fly brain does not resemble that of a vertebrate brain, the properties of fly and vertebrate neurons are quite similar, and many of the
genes involved in Drosophila nervous system development are conserved in humans and other mammals.

Our major focus is on cell-surface proteins (CSPs) that mediate interactions among neurons, and between neurons and other cell types. We have characterized a group of immunoglobulin superfamily (IgSF) CSPs that form a complex interaction network. This network, the ‘Dpr-ome’, was discovered in a global ‘interactome’ screen for binding interactions among 200 Drosophila cell-surface proteins. A subfamily of 21 2-Ig domain CSPs, the Dprs, selectively bind to another subfamily of 11 3-Ig domain CSPs, called DIPs. Each dpr and DIP gene is expressed by a distinct small subset of neurons in the larval CNS and pupal brain. Genetic analysis shows that mutations affecting Dprs and DIPs alter synaptic connectivity in the larval neuromuscular system and pupal/adult optic lobe. Signaling through Dprs and DIPs also regulates neuronal cell death. Dprs and DIPs have characteristics that match those predicted for neuronal surface labels that program the patterns of synaptic connections during development.

In collaboration with Chris Garcia, Woj Wojtowicz (Stanford), and Jost Vielmetter (Caltech Protein Expression Center), we are conducting new interactome screens for human Ig domain cell surface and secreted proteins. An initial screen for interactions among ~550 human proteins was recently completed. We are developing new methods to improve the speed and sensitivity of these screens.

We also work on receptor tyrosine phosphatases (RPTPs). These are a family of neuronal cell-surface receptors that are involved in axon guidance and synaptogenesis. We conducted loss-of-function and gain-of-function screens to identify cell-surface ligands that bind to the RPTPs, and are characterizing a number of these. One ligand, Stranded at second (Sas), interacts with the Ptp10D RPTP, and trans interactions between glial Sas and neuronal Ptp10D regulate glial Sas signaling. Sas is loaded into exosomes and secreted from cells, and Sas exosomes can move long distances within the embryo. We conducted an analysis of proteins that are components of Sas exosomes using mass spectrometry, and identified several interesting proteins, which we are characterizing genetically and biochemically. Another cell-surface ligand, Sticks and Stones (Sns) interacts with the LAR RPTP, and we found that Sns works together with LAR to control guidance of Kenyon cell axons in the brain and morphogenesis of neuromuscular junctions.

PUBLICATIONS

2020

2019


2018


2017

Li, Hanqing and Watson, Ash and Olechwier, Agnieszka and Anaya, Michael and Sorooshiyari, Siamak K. and Harnett, Dermott P. and Lee, Hyung-Kook (Peter) and Vielmetter, Jost and Fares, Mario A. and Garcia, K. Christopher and Özkan, Engin and Labrador, Juan-Pablo and Zinn, Kai (2017) Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife, 6 . Art. No. e28111. ISSN 2050-084X. PMCID PMC5578738. Download < Download>


2016

Al-Anzi, Bader and Olsman, Noah and Ormerod, Christopher and Gerges, Sherif and Piliouras, Georgios and Ormerod, John and Zinn, Kai (2016) A new computational model captures fundamental architectural features of diverse biological networks. (Submitted) Download

Division Staff

Annual Report | Biology and Biological Engineering | 2020

Division Administration

Division Operations Officer
Mike Miranda

Business Operations Manager
Joan Sullivan

Office Support Assistant for Travel and Accounting
Sue Zindle

Office Support Assistant
Kenya Zeigler/Katie Fisher

Divisional Events Coordinator
Lauren Breeyear

Grant Managers
Alex Abramyan
Christa Albanez
Bo Brown
Yesenia Gonzalez
Tom Katsikakis
Jeff Morawetz
Debbie Navarrete
Karl Oracion

HR Administrators
Janie Malone
Laurinda Truong
Jessica Silva

Facilities Administrator
Jesse Flores

Procurement and Receiving
Manny de la Torre
Albert Gomez
Andreas Feuerabendt

Electronics Shop
Tim Heitzman

The Tianqiao and Chrissy Chen Center for Neuroscience

Executive Director
Mary King Sikora

Administrative Assistant
Helen O’Connor

Academic Affairs

Assistant to the Chair and Academic Affairs Manager
Cynthia Carlson

Postdoctoral Program Administrator
Stefany Nielsen

Graduate Option Managers

Bioengineering
Linda Scott/Kenya Ziegler

Biology
Liz Ayala

Neurobiology & Computation and Neural Systems
Minah Banks

MD/PhD Programs
Raina Beaven

Biochemistry and Molecular Biophysics
Alison Ross

Geobiology
Alex Sessions
On Campus Facilities

- Bioinformatics Resource Center
- Biological Imaging Facility
- Brain Imaging Center
- Center for Transmission Electron Microscopy
- Clover Center: Clarity, Optogenetics, and Vector Engineering Research Center
- Flow Cytometry and Cell Sorting Facility
- Millard and Muriel Jacobs Genetics and Genomics Laboratory
- Monoclonal Antibody Facility
- Neurotechnology Center
- Office of Laboratory Animal Resources
- Protein Expression Center
- Proteome Exploration Laboratory
- SPEC
- Stockroom and Receiving